ACS-1803 Introduction to Information Systems

Instructor: Kerry Augustine

Data Management

Lecture Outline 2, Part 2

Data Entities, Attributes, and Items

• Entity:

- Things we store information about. (i.e. persons, places, objects, events, etc.)
- Have relationships to other entities (i.e. the entity Student has a relationship to the entity Grades in a University Student database
- General class of people, places, or things (objects) for which data is collected, stored, and maintained

• Attribute:

 These are pieces of information (characteristics) about an entity (i.e. Student ID, Name, etc. for the entity Student)

Data item:

Specific value of an attribute

Data Entities, Attributes, and Items

KEY FIELD

Employee #	Last name	First name	Hire date	Dept. number	
005-10-6321	Johns	Francine	10-07-1997	257	
549-77-1001	Buckley	Bill	02-17-1979	632	
098-40-1370	Fiske	Steven	01-05-1985	598	

ATTRIBUTES (fields)

The key field is the employee number. The attributes include last name, first name, hire date, and department number.

Data Entities, Attributes, and Items

Normalization

- Process of streamlining complex groups of data to:
 - Minimize redundant data elements.
 - Minimize awkward many-to-many relationships.
 - Increase stability and flexibility.

Data Integrity Rules

- Used by relational databases to ensure that relationships between coupled tables remain consistent.
- For example: when one table has a foreign key that points to another table, you may not add a record to the table with foreign key unless there is a corresponding record in the linked table.

Designing Databases – Data Model

Data Model

- A map or diagram that represents entities and their relationships
- Used by Database Administrators to design tables with their corresponding associations

Designing Databases – Associations

- Define the relationships one entity has to another
- Determine necessary key structures to access data
- Come in three relationship types:

	Tal	ble 1	Tab	le 2
	ID	VALUE	 FK	VALUE
One-to-one	Ŧ	A	1	A
	2	в	2	в
	3	С	3	С
	Ta	ble 1	Tab	le 2
	D	VALUE	FK	VALUE
One-to-many	1	A	 1	A
	2	в	1	Α
	3	C	2	В
	Ta	ble 1	Tab	le 2
	D	VALUE	FK	VALUE
Many-to-many	1	Α	 2	B
	1	A	1	Α
1. Q	2	В	1	Α

Designing Databases - Associations

Entity Relationship Diagram (ERD)

- Diagramming tool used to express entity relationships
- Very useful in developing complex databases

Example

- Each Home Stadium has a Team (One-to-One)
- Each Team has Players (One-to-Many)
- Each Team participates in Games
- For each Player and Game there are Game Statistics

Relational Database

- Data set up as a centralized collection of tables
- Tables are linked by common columns of data
- Tables are designed together to minimize repetition
- This is the most common database structure
- This is the one used in microcomputer databases and many larger ones too

The Relational Model

- The most common type of database model used today in organizations
- Is a three-dimensional model compared to the traditional two-dimensional database models
 - Rows (first-dimension)
 - Columns (second-dimension)
 - Relationships (third-dimension)
- The third-dimension makes this model so powerful because any row of data can be related to any other row or rows of data

Relational Model – Example I

customer- name	social- security	customer- street	customer- city	account- number
Johnson	192-83-7465	Alma	Palo Alto	A-101
Smith	019-28-3746	North	Rye	A-215
Johnson	192-83-7465	Alma	Palo Alto	A-201
Jones	321-12-3123	Main	Harrison	A-217
Smith	019-28-3746	North	Rye	A-201

A-101	500
1 201	
A-201	900
A-215	700
A-217	750

Relational Model – Example 2

D

Department Records

Department No	Dept Name	Location	Dean
Dept A			
Dept B			
Dept C			

One-to-Many

	I	nstructo	r Records	5	V
Instructor	No Inst	Name	Title	Salary	Dept No
Inst 1					Dept A
Inst 2					Dept B
Inst 3					Dept C
Inst 4					Dept A

Figure 3.12 With the relational model, we represent these two entities, department and instructor, as two separate tables and capture the relationship between them with a common column in each table.

Linking Data Tables to Answer an Inquiry

To find the name and hire date of the manager working on the sales manual project, the president needs three tables: Project, Department, and Manager.

The project description (Sales manual) leads to the department number (598) in the Project table, which leads to the manager's SSN (098-40-1370) in the Department table, which leads to the manager's name (Fiske) and hire date (01-05-2001) in the Manager table.

Data Modeling and Database Characteristics

- When building a database, an organization must consider:
 - Content: What data should be collected and at what cost?
 - Access: What data should be provided to which users and when?
 - Logical structure: How should data be arranged so that it makes sense to a given user?
 - Physical organization: Where should data be physically located?

Data Modeling

- Building a database requires two types of designs:
 - Logical design:
 - Abstract model of how data should be structured and arranged to meet an organization's information needs
 - Physical design:
 - Starts from the logical database design and finetunes it for performance and cost considerations
- Planned data redundancy:
 - Done to improve system performance so that user reports or queries can be created more quickly

Data Modeling (continued)

- Data model:
 - Diagram of data entities and their relationships
- Enterprise data modeling:
 - Starts by investigating the general data and information needs of the organization at the strategic level
- Entity-relationship (ER) diagrams:
 - Data models that use basic graphical symbols to show the organization of and relationships between data

Data Modeling Illustration

First, list data fields

- SSN
- Last Name
- •Dept. name
- Project NumberDescription
- First nameHire Date
- Dept. Number

DBMS | DB Application System | MIS

- The information system needs raw data which is stored on disk as a relational database.
- The relational database is managed by Database Management System (DBMS) software. The system calls the DBMS (behind the scenes) and the DBMS extracts data from the database.
- DBMS is a group of programs used as interface between a database and application programs, or a database and the user
- Database (Application) System is the combination of the database, the DBMS, and the application programs that access the database
- Management Information System (MIS) is the database system coupled with a set of hardware, software, telecommunications, people, and procedures. Programs which are part of the information system then transform the raw data to useful information

DBMS | DB Application System | MIS

Using MS Access as a DBMS to Develop an MIS

- MS Access can be used as an information system developer tool.
- We use it to build a customized Management Information System (MIS) for some specific purpose.
- When setting up the database as part of the DBMS, the database design schema (Table Structures, Primary Keys, Relationships) are defined before data is entered.
- The system will utilize application interface screens that serve as an interface to the DBMS and database tables.
- The system will have its own menus, input screens, output (query) screens, and reports.
- In the background, it will have a database with related tables, and programs that take the raw data from the database and convert it to the required queries and reports.
- It will also have controls, i.e. mechanisms to ensure that the output is correct and that the data is safe from accidental or deliberate destruction.
- The information system will be set up on computers and a network and will provide an effective method for users to interface with the database without ever knowing they are utilizing MS Access.
- See Supplement Notes "Using Access Screens" for detail example.

D

Database Management System (DBMS)

- System software that sets up the database structure ('skeleton' on disk according to a certain model, fills the structure with data and retrieves the data to provide meaningful information)
- Parts of DBMS:
 - Data Dictionary: defines each field and record, explains what each field means and who is authorized to update it
 - Query language: used to extract data that satisfy certain criteria from a database. Used to develop query retrieval commands and reports – which are the two main forms of output from a DBMS

Data Dictionary

- Is a document that database designers prepare to help individuals enter data
- Provides several pieces of information about each attribute in the database including:
 - Name
 - Key (is it a key or part of a key?)
 - Data Type (date, alphanumeric, numeric, etc.)
 - Valid Value (the format or numbers allowed)
- Can be used to enforce Business Rules which are captured by the database designer to prevent illegal or illogical values from entering the database (e.g. who has authority to enter certain kinds of data in specific files)

`		Instructor			
7.	Semi	iar I.			
Stud	ent				
Attri	bute	Length	Туре	Rules	1
Name Email Phone Addre City State	e I Addres e # ess	40 50 10 30 20 2	Alpha Mixed Numeric Mixed Alpha Alpha	At least 2 words Must contain @ Reject all "555" Format - ### alpha none Must be a valid state	

DBMS Functions

- A DBMS enables interactions with the database through activities such as:
 - Data Dictionary Management
 - Data Transformation and Presentation
 - Security Management
 - Backup and Recovery Management
 - Data Integrity Management
 - Database Access Languages and Application Programming Interfaces
 - Database Communication Interfaces
 - Transaction Management
 - Data entry, queries, etc.

DBMS – Data Entry

Employment Applications

DBMS - Queries

- Query A way to extract data from the database
 - Focuses on providing appropriate parameters to select the information required
- SQL (Structured Query Language)
 - A language to select and extract data from a database
 - The industry standard language for relational databases
- QBE (Query by Example)
 - A technique that allows a user to design a query on a screen by dragging and placing the query field in the desired locations

DBMS – Query Language

• e.g., SQL: Structured Query Language:

Popular language for making requests to a relational dbms

SELECT LAST_NAME, FIRST_NAME, CITY FROM APPLICANT WHERE APPLICATION DATE >= 'August 19, 2012'

SELECT LAST_NAME, FIRST_NAME, CITY SALARY
FROM EMPLOYEE WHERE DEPARTMENT = '4530' AND
SALARY > 25000

DBMS – Example of Query Results

	WORKERS Qu	Jery							
\angle	wnum	*	wname 👻	brith_date 👻	rate 👻	skill	Ŧ	certified	-
		100	James Langdon	2/22/1953	\$12.00	Painter		V	
		200	Rekha Hindoch	1/8/1960	\$30.00	Engineer		V	
		246	Pierre Garceau	7/19/1947	\$18.50	Electrician		\checkmark	
		300	Mary Clutterha	12/30/1950	\$12.50	Painter		\checkmark	
		395	Donna Graham	9/27/1956	\$21.00	Plumber		\checkmark	
		452	Isabella Fong	5/12/1957	\$15.00	Electrician			
		453	Rosita Cordeiro	8/22/1955	\$12.50	Painter			
		565	Ernest Schneid	10/31/1957	\$18.00	Electrician		\checkmark	
		664	Maurice Favrea	5/17/1962	\$12.00	Plumber			
		743	Oleh Markiw	1/1/1959	\$15.00	Carpenter		V	
		754	Emil Juliano	9/9/1949	\$15.00	Carpenter		V	
		887	Salim Agarwal	11/20/1964	\$17.00	Carpenter		\checkmark	
*		0			\$0.00				

DBMS – Example of Query Results

2	CUSTOMER NO 👻	FIRST NAME 👻	LAST NAME 👻	SALES ORDER NO 👻	ORDER DATE 🔻	ITEM NO 👻	LINE ITEM QTY 👻	LINE ITEM TOTAL 🔻
	127127	Angela	Ashuer	5890	7/20/2010	9XB	1	\$900.00
	127127	Angela	Ashuer	5890	7/20/2010	ARQ1	10	\$100.00
	127127	Angela	Ashuer	5819	8/12/2010	WC2	1	\$80.00

DBMS – Report

Report – A database function that extracts and formats information from a database for printing and presentation

Report Generator

- A specialized program that uses SQL to retrieve and manipulate data (aggregate, transform, or group)
- Reports are designed using standard templates or can be custom generated to meet informational needs

Example – Report on applicants entered in the last 30 days

- Report parameters are selected in the report request screen
- The database program uses SQL to query and present the result

DBMS – Designing a Report

- To create reports, the developer must first select the table(s) or queries(s) upon which the report will be based.
- All fields will then become available to the developer to include on the report:
- The developer formats and enters the report header, detail, and footer. The required fields are placed in the desired location on the report layout.
 - 1. On the Create tab, click Report Design.

2. Click on the Add Existing Fields button, on the Design tab, to see a list of tables/fields.

File	Home Create	External Data Data	abase Tools	Design	Arrange	Format F	age Setup				
View	Aa Colors * Themes A Fonts *	Group Hide Details	ab	Aa	XXXX 📋 🤇)	•	0 Inset	Logo Title Page Numbers 🔂 Date and Time	Add Existing Fields	Poperty Sheet
Views	Themes	Grouping & Totals				Controls			Header / Footer	Tools	

DBMS – Structured Report Design

23	- 0	=		ort Design Tools	Repo		base	ase : Datal	offee Databa
(\$			e Format Page Setup	Arrange	Design	Tools	Database	al Data
				Add Existing Fields Property Sheet Order	e e and Time	E Logo Title rs S Date	Page Number	Insert Image *	Controls
				Tools	ooter	reader / For		trois	s con
,		Property Sheet	×				1	port Data	Sales Re
	π	Selection type: Repor	e a la cala 📥		(1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,	1 * * * 2 *		1 2 2 3 1	
-		Report						t Header	F Repor
11	Other A	Format Data Event							
1			- f	al Sales Repor	∆nn u:	fee /	hC of	ressr	Fsn
1	Sales Repo	Caption	N	at bates hepot	- united	100 /	0001	10000	- Pobl
L	Report Vie	Default view							
	Yes	Allow Report View						Header	F Page I
	Tes	Allow Layout View		arra Saler	France	Juartor		Ponie	····· Cal
	Embedded	Picture type		Dates	- the second	(Halite)		es veen	2915
	(none)	Picture Tiling					eader	Region He	
	Cantar	Picture Alianment							
	Clin	Picture Alignment		a Sales	Espress	Ouarter		Region	Sale
	5 2092"	Width				a dantar			Color.
	5.2005 No	Auto Center					ooter	Region Fo	◆ Sales
	Vec	Auto Decize		esso Salesj)	::::::::::::::::::::::::::::::::::::::	10(3)		ound	Unb
	Vec	Fit to Page							
	Sizable	Border Style		1				Footer	F Page
	Both	Scroll Bars							
	Vec	Control Box							
11									
	Yes	Close Button	and the state of the					TEAATAR	- Lenor
	Yes Both Enab	Close Button Min Max Buttons						AND	- Repor
	Yes Both Enab	Close Button Min Max Buttons Moveable		≕Sum([Espresso Sales])				otal	Grand T
	Yes Both Enab No Yes	Close Button Min Max Buttons Moveable Show Page Margins		≓Sum([Espresso Sales])				otal	Grand T
	Yes Both Enab No Yes 24	Close Button Min Max Buttons Moveable Show Page Margins Grid X		∏≓Sµm([Espresso Sa[es])				otal	Grand T
	Yes Both Enab No Yes 24 24	Close Button Min Max Buttons Moveable Show Page Margins Grid X Grid Y		∏≓Sµm([Espresso Sa[es])				otal	Grand T
	Yes Both Enab No Yes 24 24 24 Yes	Close Button Min Max Buttons Moveable Show Page Margins Grid X Grid Y Lavout for Print		∐≓Sµm([Espresso Sa[es])				otal	Grand

DBMS – Structured Report Results

/OF	RKERS				
wnum	wname	brith_date	rate	skill	certified
100	James Langdon	2/22/1953	\$12.00	Painter	
200	Rekha Hindocha	1/8/1960	\$30.00	Engineer	
246	Pierre Garceau	7/19/1947	\$18.50	Electrician	
300	Mary Clutterham	12/30/1950	\$12.50	Painter	
395	Donna Graham	9/27/1956	\$21.00	Plumber	
452	Isabella Fong	5/12/1957	\$15.00	Electrician	
453	Rosita Cordeiro	8/22/1955	\$12.50	Painter	
565	Ernest Schneider	10/31/1957	\$18.00	Electrician	
664	Maurice Favreau	5/17/1962	\$12.00	Plumber	
743	Oleh Markiw	1/1/1959	\$15.00	Carpenter	
754	Emil Juliano	9/9/1949	\$15.00	Carpenter	
887	Salim Agarwal	11/20/1964	\$17.00	Carpenter	
sday, Se	ptember 24, 2013				

WORKERS

EspressoCoffee Annual Sales Report

Sales Region	Quarter	Espresso Sales
Austria	1	\$610,911.00
	2	\$901,574.00
	3	\$465,460.00
	4	\$671,190.00
	Total	\$2,649,135.00
Canada	1	\$635,144.00
	2	\$777,186.00
	3	\$338,432.00
	4	\$226,018.00
	Total	\$1,976,780.00
China	1	\$61,241.00
	2	\$643,284.00
	3	\$834,940.00
	4	\$497,871.00
	Total	\$2,037,336.00
France	1	\$969,279.00
	2	\$61,797.00
	3	\$353,502.00
	4	\$779,811.00
	Total	\$2,164,389.00

Setting Up a Relational Database in a Computer

Implementing the Concepts

- After having reviewed all the basic database models in the last section, the following section will focus on a practical process to set up a database
 - I) Complete Your Data Requirements Analysis

Steps to set up a Database

- First: Speak to people who will use the information system
 - go to every person that will need any kind of output from the computer when doing his / her job
 - Find out from them what data fields do they need for different reports that they will use
 - List those fields (data items), and write them all down
- The database is going to be set up as a relational database (most likely)
- Always think of the relationships between fields

Complete Your Data Requirements Analysis

- Example: School information System
- Three different users tell you their information needs:
 - Person I.
 - A report displaying Student number, Student Name, Address, and City for all students
 - A report showing Student Name, Student phone, Student Major, ordered by student name
 - Person 2
 - Student Name, Course name and grade that each student took last term
 - Major ,St name and phone number for all students
 - Person 3
 - Course name, Course number, Student Name and Grade for each student
 - Course name, course number for each course offered in the term

Complete Your Data Requirements Analysis

- Example: School information System
- Three different users tell you their information needs:
 - Person I.
 - A report displaying Student number Student Name Address and City for all students
 - A report showing Student Name, Student phone, Student Major, ordered by student name
 - Person 2
 - Student Name, Course name and grade that each student took last term
 - Major ,St name and phone number for all students
 - Person 3
 - Course name, Course number, Student Name and Grade for each student
 - Course name, course number for each course offered by enrolment date over the past three years

Complete Your Data Requirements Analysis

- Example: School Information System
- The director of XYZ School would like to assess the initial design of the system using the following student, course, and grade information:
 - Student #: 1234; Student: A. Lam; Address: 491 Castle, Wpg; Phone: 204-258-6987; Major: Economics; Course: 1803, Computers, Grade: A; Course: 1901, Pascal, Grade: B; Course 2002, Finance, Grade A
 - Student #: 9876; Student: R. Kelly; Address: 22 Miller Cres, Wpg; Phone: 204-258-7563; Major: Biology; Course: 2002, Finance, Grade: B; Course: 3421, Entomology, Grade: B; Course 4523, Zoology, Grade: C
 - Student #: 4567; Student: J. Ng; Address: 399 High St.; Phone: 204-785-2145; Major: Business; Course: 1304, Accounting, Grade: C; Course: 2233, Marketing, Grade: A.

Store Meaningful Data About the Information

- In order to store data on disk meaningfully, we notice we must set it up first, at least in a file so that we can get a variety of useful information out
- Storing just characters alone in a computer won't do; we need to group them
- Storing just fields alone in a computer won't do; we need to group them.
- Storing just one record alone in a computer won't do; we need a group of several records that follow the same layout and are somehow related (say students of the same class)

Create Your Master Database File (Table)

- Data Items:
 - Student Number,
 - Student Name,
 - Student Street address,
 - Student City
 - Student Phone,
 - Student major area (only one),
 - for each course the student takes, the Course Number, Course Name, Enrolment Date, and Grade

Field NameSTNUMBERSTNAMESTREETCITYSTPHONEMAJORCNOCNAMEENROLG

Insert Data into Your Master File (Table)

Insert all data records one by one:

ST Number	St name	Street	City	Major	Phone Number	Course Name	Course Number	Enrolment	Grade
1234	Lam A	491 Castle	Wpg	Economics	208568974	Computers	1803		А

Ensure all of the data attributes have been identified and populated in the table. If there are no data elements for a specific attribute, then enter data

St Number	St Name	Street	City	Major	Phone Course Number Course Nam		Course Name	Enrolment	Grade
1234	Lam A	491 Castle	Wpg	Economics	2042586987	.042586987 1803		090912	А
9876	Kelly R	22 Miller Cr	Wpg	Biology	2042587563	2002	Finance	050112	В
4567	Ng J	399 High St	Wpg	Business	2047852145	1304	Accounting	050112	С

Analyze Data in Your Table

STNumber	STName	Address	City	Major	StPhone	Cnumber	Cname	Enrolment	Grade
1234	Lam A	491 Castle	Wpg	Economics	2042586987	1803	Computers	090912	A
1234	Lam A	491 Castle	Wpg	Economics	2042586987	1901	Pascal	080911	В
1234	Lam A	491 Castle	Wpg	Economics	2042586987	2002	Finance	060111	А
9876	Kelly R	22 Miller Cr	Wpg	Biology	2042587563	2002	Finance	050112	В
9876	Kelly R	22 Miller Cr	Wpg	Biology	2042587563	3421	Entomology	080911	В
9876	Kelly R	22 Miller Cr	Wpg	Biology	2042587563	4523	Zoology	070910	С
4567	Ng J	399 High St	Wpg	Business	2047852145	1304	Accounting	050112	с
4567	Ng J	399 High St	Wpg	Business	2047852145	2233	Marketing	080911	A

Determine the Data Relationships

- Determine the relationships when you have all the fields listed
- Group related fields into one table
 - Use logic, think about relationships
 - On this example, all fields with a one-to-one relationship go in one table, and all fields that have a one-to-many relationship in another table
- Determine what fields will be links between the tables
- Create your Data Model

Develop Your Entity Relationship (ER) Model

- When stored on Disk, Student Number is the common column linking data in the STUDENT table with data in the GRADES table
- An entity relationship (ER) diagram of this set up would be:

Normalize the Tables (as per your ER Model)

Student	STNUMBER -	STNAM	/IE →	STRE	ET 🔻	CITY	Ŧ	STPHONE	Ŧ	STMAJ	DR	Ŧ
StNumber	1234	LAM A		491 Cas	tle	Wpg		20425869	987	Economi	ics	
StName	9876	KELLY R		222 Mil	ler Cr	Wpg		20425875	63	Biology		
Street	4567	NG J		399 HIG	H ST	Wpg		20478521	.45	Business	5	
City	STNU	MBER -	COUR	SENUN -	COUF	SENAME	• I	ENROLMENT •		GRADE		
StPhone		1234	1803		Compu	iters		090912	Α			
StMajor		1234	1901		Pascal			080911	В			
		1234	2002		Financ	e		060111	Α			
Crada		4567	1304		Accour	nting		050112	С			
Graue		4567	2233		Market	ting		080911	А			
Student		9876	2002		Financ	e		050112	В			
Course Number		9876	3421		Entom	ology		080911	В			
		9876	4523		Zoolog	y		070910	С			
Course Name												

This is an <u>Unnormalized</u> Database

© 2016 Cengage Learning[®]. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.

Enrolment

Grade

Identify and Label Your Keys

- Primary Key Student Table
 - Student Number
- Foreign Key Grade Table
 - Student Number
- Compound Primary Key Grade Table
 - Student Number + Course Number + Enrolment

Identify and Label Your Keys

Enrolment

Grade

	Primary Key										
Student	STNUMBER 👻	STNAME 🔫	STREET	•	CITY	Ŧ	STPHONE	Ŧ	STMAJO	DR	7
StNumber	1234	LAM A	491 Castl	e	Wpg		20425869)87	Economi	CS	
StName	9876	KELLY R	222 Mille	r Cr	Wpg		20425875	63	Biology		
Street	4567	NG J	399 HIGH	ST	Wpg		20478521	.45	Business	i	
City	Foreig	n Key MBER - COUR	SENUN -	COUR	SENAME				GRADE		
StPhone		1234 1803	C	Compu	iters		090912	A			
StMajor		1234 1901 1234 2002	F	Pascal	0		080911	B			
Cuada		4567 1304	Ļ	Accour	nting		050112	C			
Graue		4567 2233	P	Market	ting		080911	А			
Student		9876 2002	F	inanc	e		050112	В			
Course Number		9876 3421	E	ntom	ology		080911	В			
Course Name		9876 4523	Z	Coolog	y		070910	С			

This is a <u>Normalized</u> Database

Identify and Label Your Keys

Student	STNUMBER -	STNAM	×	STREE	₹ T	CITY		STPHONE	Ŧ	STMAJ	DR	Ŧ
StNumber	1234	LAM A		491 Cast	:le	Wpg		2042586	987	Econom	ics	
StName	9876	KELLY R		222 Mill	er Cr	Wpg		2042587	563	Biology		
Street	4567	NG J	D ·	399 HIG	H ST	Wpg		2047852	145	Busines	5	
City	Con			nary K	ey Cour	SENAME	~ [GRADE		
, StPhone	01110	1234 1	803		Compu	uters		090912	A	UNDE		
StMajor		1234 1	901		Pascal			080911	В			
Suriajoi		1234 2	002		Financ	e		060111	А			
Crada		4567 1	304		Accour	nting		050112	С			
Grade		4567 2	233		Marke	ting		080911	А			
Student		9876 2	002		Financ	e		050112	В			
Course Number		9876 3	421		Entom	ology		080911	В			
		9876 4	523		Zoolog	SY.		070910	С			
Course Name												

Enrolment

Grade

This is a <u>Normalized</u> Database

Define Your Report

- Example: School information System
- > Three different users tell you their information needs:
 - Person I.
 - A report displaying Student number, Student Name, Address, and City for all students
 - A report showing Student Name, Student phone, Student Major, ordered by student name
 - Person 2
 - Student Name, Course name and grade that each student took last term
 - Major ,St name and phone number for all students
 - Person 3
 - Course name, Course number, Student Name and Grade for each student
 - Course name, course number for each course offered by enrolment date over the past three years

Data Report – Courses by Enrolment

Courses by Enrolment Date for XYZ School

Enrol Date	Course No	Course Name					
07-Sep-10	4523	Zoology					
Total Numbe	er of Courses:						
06-Jan-11	2002	Finance					
Total Numbe	er of Courses:						
08-Sep-11	1901	Pascal					
	2233	Marketing					
	3421	Entomology					
Total Numbe	er of Courses:	3					
05-Jan-12	1304	Accounting					
Total Numbe	er of Courses:						
09-Sep-12	1803	Computers					
Total Number of Courses:							

Define Your Queries

Person I

A report displaying Student number, Student Name, Address, and City for all students

- A report showing Student Name, Student phone, Student Major, ordered by student name
- Person 2
 - Student Name, Course name and grade that each student took last term
 - Major ,St name and phone number for all students
- Person 3
 - Course name, Course number, Student Name and Grade for each student
 - Course name, course number for each course offered by enrolment date over the past three years

Data Queries – Students/ Student Grades

 A report displaying Student number, Student Name, Address, and City for all students

St Number	St Name	Street	City
1234	Lam A	491 Castle	Wpg
9876	Kelly R	22 Miller Cr	Wpg
4567	NgJ	399 High St	Wpg

 Student Name, Course name and grade that each student took last term

STName	Cname	Enrolment	Grade		
Lam A	Pascal	080911	В		
Kelly R	Entomology	080911	В		
NgJ	Marketing	080911	А		

© 2016 Cengage Learning[®]. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.

Big Data

- Extremely large and complex data collections acquired from either sensors or Social media
 - Traditional data management software, hardware, and analysis processes are incapable of dealing with them
- Three characteristics of big data
 - Volume Estimated (2014) 4.4 zetabytes of data
 - Velocity 5 trillion bits of data per seconds
 - Variety structured vs unstructured data

Sources of Big Data

FIGURE 3.20

Sources of an organization's useful data

An organization has many sources of useful data.

© 2018 Cengage Learning. All Rights Reserved.

Big Data Uses

• Examples:

- Retail organizations monitor social networks to engage brand advocates, identify brand adversaries
- Advertising and marketing agencies track comments on social media
- Hospitals analyze medical data and patient records
- Consumer product companies monitor social networks to gain insight into consumer behavior
- Financial service organizations use data to identify customers who are likely to be attracted to increasingly targeted and sophisticated offers

Challenges of Big Data

- How to choose what subset of the data to store
- Where and how to store the data
- How to find the nuggets of data that are relevant to the decision making at hand
- How to derive value from the relevant data
- How to identify which data needs to be protected from unauthorized access

Data Management and Governance

- Data management purpose is to ensure that data remains accessible, reliable and timely to meet the needs of the users of an organization. It is driven by a variety of factors:
 - The need to meet external regulations designed to manage risk associated with financial misstatement
 - The need to avoid the inadvertent release of sensitive data
 - The need to ensure that high data quality is available for key decisions
- **Data governance** defines the roles, responsibilities, and processes for ensuring data can be trusted and used by the entire organization
 - Requires business leadership and active participation
 - Use of a cross-functional team is recommended
 - Team should consist of executives, project managers, line-of-business managers, and data stewards
 - A data steward is an individual responsible for management of critical data elements

Data Warehouses and Data Marts

Data Warehouses and Data Marts

- Data warehouse:
 - Database that holds business information from many sources in the enterprise
- Data mart:
 - Subset of a data warehouse that is used by smalland medium-sized businesses and departments within large companies to support decision making
 - A specific area in the data mart might contain greater detailed data than the data warehouse

Business Intelligence

A broad range of technologies and applications

Enabling an organization to transform mostly structured data obtained from information systems to perform analysis, generate information, and improve the decision making of the organization

Business Intelligence (cont'd.)

- Technologies include:
 - Data mining
 - An information-analysis tool that involves the automated discovery of patterns and relationships in a data warehouse
 - Provides bottom-up, discovery-driven analysis
 - Predictive analytics
 - A form of data mining that combines historical data with assumptions about future conditions to predict outcomes of events, e.g., future product sales or the probability that a customer will default on a loan
 - Example: Used by retailers to upgrade occasional customers into frequent purchasers.
 - Software can be used to analyze a company's customer list and a year's worth of sales data to find new market segments

Data Mining and Predictive Analytics

Data Warehouses, Data Marts, and Data Mining

Predictive analysis:

- Form of data mining that combines historical data with assumptions about future conditions to predict outcomes of events
- Used by retailers to upgrade occasional customers into frequent purchasers
- Software can be used to analyze a company's customer list and a year's worth of sales data to find new market segments

Data Mining Applications

Branding and positioning of products and services

• Enable the strategist to visualize product behavior in different markets, while condensing the data in dimensions that are easily analyzed

Customer Churn

Predict current customers who are likely to switch to a competitor

Direct Marketing

 Identify customer prospects most likely to respond to direct marketing practices

Fraud detection

- Market Segmentation
- Trend analysis (sales, spending, promotions, etc.)