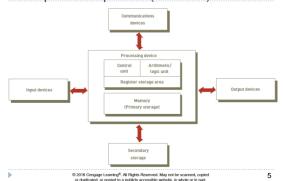
ACS-1803 Introduction to Information Systems	
Instructor: Kerry Augustine	
Introducing the Computer	
Lecture Outline 9-1	
Introducing the Computer	
- Computer Components and	
Processing Functions	
Introducing the Computer	
 Information processor capable of performing electronically substantial computations including numerous arithmetic or 	
logical operations without intervention by a human operator • Basic architecture:	
CENTRAL INPUT → PROCESSING → OUTPUT	
UNIT + MAIN MEMORY (internal)	
D 2010 Cergage Learning*. All Rights Reserved. May not be scareed, copied or diplicated, or posted to a publishy accessible website, in whole or in part.	

Computer Components

▶ Central processing unit (CPU):

- Arithmetic/logic unit (ALU): Performs mathematical calculations and makes logical comparisons
- Control unit: Sequentially accesses program instructions, decodes them, and coordinates the flow of data in and out of the ALU, registers, primary storage, and even secondary storage and various output devices
- Register: Small memory location where instructions to be processed are stored.



© 2016 Cengage Learning®. All Rights Reserved. May not be scanned, copie

4

Computer Components (continued)

_ _

Processing Characteristics and Functions

▶ Clock speed:

- Series of electronic pulses produced at a predetermined rate that affects machine cycle time
- Often measured in:
 - Megahertz (MHz): millions of cycles per second
 - ▶ Gigahertz (GHz): billions of cycles per second

▶ Physical characteristics of the CPU

 Most CPUs are collections of digital circuits imprinted on silicon wafers, or chips, each no bigger than the tip of a pencil eraser

> © 2016 Cengage Learning[®]. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.

IZ.	
Memory Characteristics and Functions	
Memory:	
 Provides the CPU with a working storage area for programs 	
and data	
Rapidly provides data and instructions to the CPU	
Storage capacity:	
Eight bits together form a Byte	
© 2016 Cengage Learning [®] . All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.	
✓	
Main Memory and Instructions	
Cells in main memory hold:	
 instructions and data for the instructions 	
both in electronic form	
 Instructions for the CPU tell it to perform sequences of very basic operations 	-
 e.g., add, subtract, multiply, divide, move, store 	
 these are the only kind of instructions that the computer can actually execute 	
 Every major problem that we want the computer to solve must be broken down into a series of instructions at this simple level 	
© 2016 Cengage Learning*. All Rights Reserved. May not be scanned, copied 8	
or duplicated, or posted to a publicly accessible website, in whole or in part.	
I/	
Sample Machine Level Program	
Sample Fractime Level Frogram	
Computer Instructions	
Opcode Address	
Instruction for a computer: opcode + address	
Opcodes (engineers decide on these):	
 008 - clear accumulator and add to it the contents of the main memory address that follows this opcode 	
 009 - add to the accumulator the contents of the main memory address 	
 that follows this opcode 010 - store the result from the accumulator in the main memory address 	
that follows this opcode	

example of an instruction: 008 003

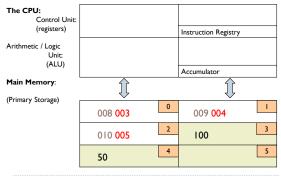
© 2016 Cengage Learning[®]. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.

		П

Machine Level Program – First Generation

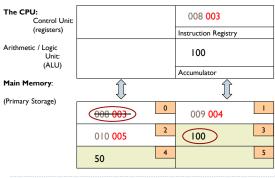
Instruction is: 008 003

008 - load into accumulator in ALU

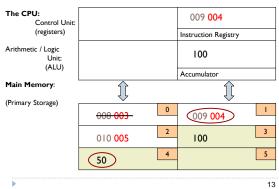

003 - whatever is in address (cell) 3 in memory

progran	n: memory cell	0:	008 003
		l:	009 004
		2:	010 005
data:	memory cell	3:	000 100
	memory cell	4:	000 050

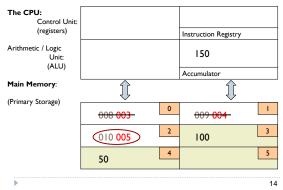
Instructions are transferred, from memory into the CPU's control unit, one by one, where they are placed in a register and decoded by "wires"

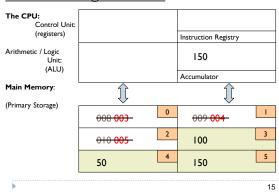

D 2016 Cengage Learning®. All Rights Reserved. May not be scanned, copie or dunificated, or neeted to a publish accessible website in whole or in part. 10

Basic Workings of a CPU:



11


Basic Workings of a CPU:


Basic Workings of a CPU:

Basic Workings of a CPU:

Basic Workings of a CPU:

How the Computer Understands Instructions

- ▶ The machine fetches instructions (from memory), decodes and executes (in CPU) and stores results of the execution (in memory)
 - example of an instruction for CPU: 008 003
- ▶ However, such an instruction must be represented electronically, ONLY in terms of + or -
 - > 008 003 (base 10)
 - ▶ 1000 0011(base 2) +--- --++ (electronic form)
 - This is how the instruction looks in the machine

© 2016 Cengage Learning[®], All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.

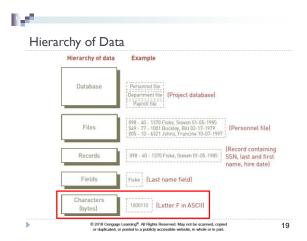
16

How the Computer Understands Instructions

▶ Base 10	Base 2	
Decimal pattern	Binary numbers	Electronic form
0	0	-
1	1	+
2	10	+-
3	11	++
4	100	+
5	101	+-+
6	110	++-
7	111	+++
8	1000	+
9	1001	++

17

How the Computer Understands Instructions


- Base 10 → Use 10 different digits to represent numbers
- ightharpoonup Base 2 ightharpoonup Use only two digits to represent numbers

I I I I I (carried digits) 0 | | 0 | (13) + | 0 | | 1 | (23)

= 1 0 0 1 0 0 = 36

- Binary is a base-2 system, each digit represents an increasing power of 2, with the rightmost digit representing 2⁰, the next representing 2¹, then 2², and so on. T
- To determine the decimal representation of a binary number simply take the sum of the products of the binary digits and the powers of 2 which they represent.
- $\,\blacktriangleright\,$ For example, the binary number 100100 is converted to decimal form as follows:
- $\begin{array}{l} {} \hspace{0.2cm} \hspace$

© 2016 Cengage Learning®. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.

\mathbb{R}^{4}

Unit of Digital Measure

- ▶ Bit (a binary digit):
 - ▶ Circuit that is either on (I) or off (0)
- Byte:
 - Made up of eight (8) bits
- ▶ Character:
 - ▶ Basic building block of information two (2) or more bytes

word (16-bits, 2 bytes)

© 2016 Cengage Learning[®]. All Rights Reserved. May not be scanned, copi or duplicated, or posted to a publicly accessible website, in whole or in part 20

Digital Measure

Name	Abbreviation	Number of Bytes
Byte	В	1
Kilobyte	KB	2 ¹⁰ or approximately 1,024 bytes
Megabyte	МВ	2 ²⁰ or 1,024 kilobytes (about 1 million)
Gigabyte	GB	2 ³⁰ or 1,024 megabytes (about 1 billion)
Terabyte	ТВ	2 ⁴⁰ or 1,024 gigabytes (about 1 trillion)
Petabyte	PB	2 ⁵⁰ or 1,024 terabytes (about 1 quadrillion)
Exabyte	EB	260 or 1,024 petabytes (about 1 quintillion)
Zettabyte	ZB	2 ⁷⁰ or 1,024 exabytes (about 1 sextillion)
Yottabyte	YB	280 or 1,024 zetabytes (about 1 septillion)

© 2016 Cengage Learning[®]. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.

100

How the Computer Understands Instructions

- Instructions at this level (+ and -) are said to be in machine language
- Earliest programs were written in machine language (first generation language)
- ▶ Then, a coding system was developed
- each character on keyboard is represented by a specific sequence of 0s and 1s
- ▶ (ASCII or EBCDIC agreed upon coding schemes)

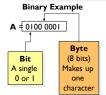
© 2016 Cengage Learning®, All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.

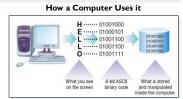
22

Processing - Language Binary Example

American Standard Code for Information Interchange (ASCII)

Character	ASCII-8 Binary Code	Character	ASCII-8 Binary Code	Types of Binary
A	0100 0001	S	0101 0011	Micro Computers
В 🕙	0100 0010	T	0101 0100	•
c '	0100 0011	U	0101 0101	ASCII - 8 bit
D	0100 0100	V	0101 0110	Extended – 8 bit.
E	0100 0101	w	0101 0111	
F	0100 0110	x	0101 1000	Mainframe Computers
G	0100 0111	Y	0101 1001	EBCIDIC – 8 bit
H	0100 1000	Z	0101 1010	
I	0100 1001	0	0011 0000	 Extended Binary Coded
J	0100 1010	1	0011 0001	Decimal Interchange Cod
K	0100 1011	2	0011 0010	Other Types
L	0100 1100	3	0011 0011	
М	0100 1101	4	0011 0100	Unicode – 16 bit
N	0100 1110	5	0011 0101	 Universal Character Se
0	0100 1111	6	0011 0110	
P	0101 0000	7	0011 0111	 Used for international
Q	0101 0001	8	0011 1000	languages


23



Processing - Language

Binary or Machine Language (First General Language)

- The language that all computers use
 IT is expressed in 0s or 1s only (see below)
- Binary utilizes Base-2 math to convert from normal characters to binary code (e.g. A = 0100 0001 in binary)

© 2016 Cengage Learning®. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.

How did a coding system make programming easier?	
cusici .	
Now programs could be written in symbolic machine language (assembly language) because letters could be entered into a computer in 0s and 1s	
- How would you write your first name in Binary?	
0 2016 Congage Learning* All Rights Reserved. May not be scanned, copied or dyplicated, or posted to a publishy accessible website, in whole or in part.	
12	
Assembly Language – Second Generation	
e.g., CLA X	
ADDY (second generation language) STO Z X	
Y Z	
ADDINGTWO NUMERS IN ASSEMBLY LANGUAGE	
A translation program [assembler], itself in machine language, would translate this code into actual machine language for the CPU	
0 2016 Companye Learning [®] - All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.	
Touching Associated Associated	
Translating Assembly Language	
Programmer writes CLA X	
 Machine receives 0100 0011 0100 1100 0100 0001 0101 1001 	
C L A X	
(if there was no ascii we couldn't get this in) - Assembler program translates this to:	
1000 0011 (008 003) [equivalent machine language instruction]	
0 2016 Congage Learning* All Rights Reserved. May not be scanned, copied or diplicated, or posted to a publishy accessible website, in whole or in part.	

Higher Level Languages

Assembly language [second generation] - low level:

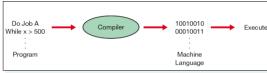
- one statement in assembly language translates into
- one statement in machine language

A complicated, "real world" problem, still had to be broken down into small steps for the CPU

Then came third generation languages (high-level)

- one statement in 3GL translates into
- many statements in machine language

© 2016 Cengage Learning[®], All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.


28

Compilers and Interpreters

Compilers
These highly-specialized software applications are used to convert program instructions (source code) into the machine code (object code) prior to being loaded into a computer's secondary storage

Compiler Example

29

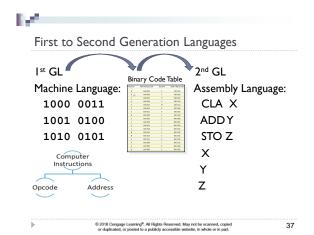
Third Generation Languages

FORTRAN 3rd Generation Language:

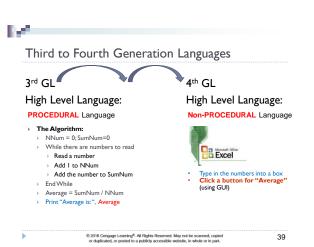
Z = X + Y

(will be translated to mach. language by FORTRAN compiler)

COBOL 3rd Generation Language:


ADDYTO X GIVING Z.

(will be translated to mach. language by COBOL compiler)


© 2016 Cengage Learning®. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.

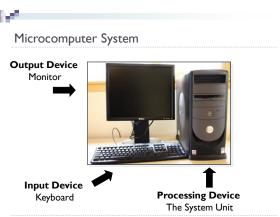
Third General	tion Language	es	
Not necessary toTranslation prog	o think at the lever		3GL to
machine languag			1 .1
	nd HOW to do		er both
Different 3GLs: COBOL (busin	ness)	FORTRAN (scientifi	c)
BASIC C, C++, C#		PASCAL JAVA	
0 2016	fferent grammar; 3 Cengage Learning®. All Rights Reserv plicated, or posted to a publicly accessit	suited to different prob ed. May not be scanned, copied de website, in whole or in part.	blems 31
Farmel: Con			
Fourth Gener		ges	
Much more user-f	friendly		
Tell the computerWe call this NON		out <u>not</u> HOW to do it. AL Language	•
• Eg: average <list o<="" td=""><td></td><td> oo-</td><td></td></list>		oo-	
	or specific proble	ms / uses	
Different 4GLs:	DOS		
	dBASE SQL		
	PowerBuilder		
0 2016	G Cengage Learning [®] . All Rights Reserv plicated, or posted to a publicly accessit	ed. May not be scanned, copied	32
or dup	pricated, or posted to a publicly accessit	ore weesite, in whole or in part.	
Farmels Com	nation Com	·tina	
Fourth Gener	ation Compu	iting	
- We can also call o		on software	
- Spreadshe	eets		
- Web brow - Multimed	vsers ia programs		
		.l) software [WHAT t	to do:
not HOW] but the	y are not, prope r	ly, languages	,
-They use a GRAF			
© 2016 or dup	3 Cengage Learning [®] . All Rights Reserve plicated, or posted to a publicly accessit	ed. May not be scanned, copied ble website, in whole or in part.	33

Procedural and Non-procedural Computing	
PROCEDURAL (3rd Generation Language)	
 Need to tell the computer WHAT you want and HOW to do it (how to proceed) 	
 Need to have an algorithm for the problem (sequence of logical steps necessary to solve the problem) 	
-Need to code the algorithm in a procedural (3 rd Gen) language	
NON-PROCEDURAL (4th Generation Language)	
- Tell the computer what to do, but not how to do it.	
0 2016 Congage Learning* All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.	
Finding the Average of Numbers	
• AVERAGE: 232, 452, 554, 667, 932, 122;	
→ The Algorithm:	
NNum = 0; SumNum=0	
 While there are numbers to read Read a number 	
 Add I to NNum Add the number to SumNum 	
▶ End While	
Average = SumNum / NNumPrint "Average is:", Average	
0 2016 Corquipe Learning [®] , All Rights Reserved, May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.	
C. P. al. Al. ad	
Coding the Algorithm The algorithm (set of steps) will now be coded in a non-	
procedural language: Microsoft Excel	
This program tells the computer HOW to find the average	
 The program compiles to machine language using an algorthm 	
Excel	
 Type in the numbers into a box Click a button for "Average" (using GUI) 	
0 2016 Compage Learning*. All Rigids Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.	
on emperoration on proceed for a planning autorization resistance, as more in a f [38].	

Second to Third Generation Languages 2nd GL 3rd GL Assembly Language: High Level Language: PROCEDURAL Language CLA X 10010010 Do Job A → 00010011 ADDY While x > 500 STO Z Machine Program Χ Υ Z 38

Generations of Programming Languages

Programming Languages


Used to generate program instructions and have evolved over time making them more powerful, easier to read and write, and more natural language-focused

Generations of Programming Languages				
	mid			
1940s	1950s	1950-60s	1970s	1990s
st	2 nd	3 rd	4 th	5 th
<u>Machine</u> Binary	Symbolic Use of symbols	High-Level Use English like words for procedures	Outcome Oriented Use outcome focused words	Artificial Intelligence Natural language (spoken English)

© 2016 Cengage Learning[®], All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.

40

Computer Hardware - Microcomputer System

The Microcomputer

E.g., PC or Apple

- microprocessor (chip) is the CPU
- · much elaborate, user-friendly software
- consists of: system unit (box), monitor (screen), keyboard, mouse, printer

In the system unit:

 motherboard, disk drives, CD-ROM drive, cards, cables, power supply

© 2016 Cengage Learning®. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.

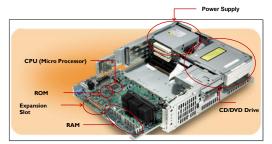
43

Motherboard

- Main circuit board: microprocessor (CPU chip), RAM (Random Access memory main memory), buses, cards
- Intel microprocessor chips (past and present):

8088, 8086, 80286, 80386, 80486, Pentium+++

-speed in MegaHertz (Million of vibrations per second) or GigaHertz (1024 MHz)


-all processing (calculations) done in the microprocessor

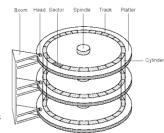
•

2016 Cengage Learning[®]. All Rights Reserved. May not be scanned, copies or duplicated, or posted to a publicly accessible website, in whole or in part. 44

Processing - Mother Board Example

 A computer's Motherboard holds or connects to all of the computer's electronic components

> © 2016 Cengage Learning[®]. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.


	Ram/Rom /Expansion Cards		
	RAM: main memory chips: 2-8 GB + RAM holds the Operating System, Application Software, Data	•	
-	ROM (Read Only Memory) – burned-in programs to start up the computer		
-	Buses (multi-lane highways) carry instructions from memory to microprocessor and back		
-	Expansion Cards: circuit boards that plug into expansion slots on the motherboard; Links peripheral equipment (printers, disks) with motherboard at the back of the cards are ports		
j	0 2016 Cengage Learning [®] , All Rights Reserved. May not be scanned, copied or duplicated, or posted to a policity accessible website, in whole or in part.	·	
By			
	Computer Storage – Primary/Secondary		
	Primary (Internal) Storage:		
	 Main memory Stores instructions and data that are being worked on by the CPU Contents erased when power off 	•	
	Secondary (External) Storage: Devices that store large amounts of data, instructions, and information more permanently than allowed with memory Nonvolatility		
	NonvolatilityGreater capacityGreater economy		
	Most common forms Magnetic disk, tape Optical storage Solid state		
j	0 2016 Cengage Learning [®] All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.		
D/			
	Secondary Storage Devices	•	
	 Sequential access Data must be retrieved in the order in which it is stored 		
	 Devices used are called sequential access storage devices (SASDs) 		
	Direct access		
	 Records can be retrieved in any order Devices used are called direct access storage devices (DASDs) 		
	Sequential Access		
j	Flandom Access 0 2/310 Congage Learning*. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part. 48	•	
		•	

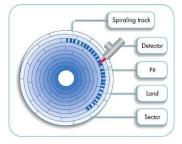
 $\| y^{\alpha_0}$

Magnetic Disk

- · hard disk
- platters one below other
- each platter has tracks
- data stored along tracks
- info. picked up by read / write heads
- software and data taken from disk to main memory
- disk allows <u>direct access</u> as opposed to tape which is sequential

.

© 2016 Cengage Learning[®]. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.

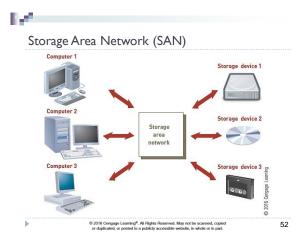

49

Optical Storage

CD ROM

- laser light instead of magnetic form
- can store much more data in same amount of space
- A CD can hold up to 740 MB Data

•


2016 Cengage Learning[®]. All Rights Reserved. May not be scanned, copie or duplicated, or posted to a publicly accessible website, in whole or in part. 50

Secondary Storage Devices

- Digital video disc (DVD):
 - Storage medium used to store software, video games, and movies
- Solid state secondary storage devices:
 - Store data in memory chips rather than magnetic or optical media
 - Have few moving parts, so they are less fragile than hard disk drives
 - High cost per GB of data storage
 - Lower capacity compared to current hard drives

D 2016 Cengage Learning®.	All Rights Reserved	i. May not be scanned,	сор
or duplicated, or posted to	a publicly accessible	website, in whole or in	par

Secondary Storage Devices

- Storage as a Service:
 - Data storage service provider rents space to people and organizations
 - Users access their rented storage space via the Internet

2016 Cengage Learning[®]. All Rights Reserved. May not be scanned, copie or duplicated, or posted to a publicly accessible website, in whole or in part. 53

Input Devices

- ▶ Devices used to input general types of data:
 - Personal computer input devices
 - ▶ Speech recognition technology
 - Digital cameras
 - ▶ Touch-sensitive screens
 - ▶ Barcode Readers
 - Pen input devices
 - Magnetic stripe card
 - Radio Frequency Identification

© 2016 Cengage Learning®	. All Rights Reserved. May not be scanned, o	орі

Digital media equivalent of a conventional printed book

© 2016 Cengage Learning®. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.

Computer System Types	
Computer systems can range from desktop or portable computers to massive supercomputers	
 Two major groups of general-purpose computers Single-user computers with portable and nonportable option 	
Multiple-user computers	
0 2019 Compage Learning®, All Rights Reserved. May not be scanned, copied or deplicated, or posted to a policity accessible website, in whole or in part.	
l/	
Portable Single-User Computers	
 Handheld computer: a compact computing device Typically includes a display screen with stylus or touch screen input along with a compact keyboard or numeric keypad 	
 Applicable as POS devices 	
 Rugged versions are available for military applications Laptop computers are designed for use by mobile users 	
Notebook and ultrabook computers are smaller than laptop computers	
 Tablet computers are portable, lightweight computers with or without a keyboard 	
0:2019 Cengage Learning®. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.	
V	
Multi-User Computer Systems	
 A server is employed by many users to perform a specific task, such as running network or Internet applications 	
 Server systems consist of multiuser computers, including supercomputers, mainframes, and other servers 	
Blade server: a server that houses many individual computer motherboards	
© 2016 Cengage Learning [®] , All Rights Reserved. May not be scanned, copied or deplicated, or posted to a policity accessible website, in whole or in part.	

Multi-User Computer Systems

- Supercomputers: largest, most powerful, \$\$\$; perform parallel processing
- Mainframes: central, many dumb terminals
- ▶ Minicomputers: smaller mainframes
- Microcomputers: can be networked; others: {e.g., portable computers, laptops, tablets, etc.
- ▶ Next: Quantum Computing

© 2016 Cengage Learning®. All Rights Reserved. May not be scanned, coping of durificatest, or posted to a publicity accessible website in whole or in part

61

Computer Software

- Operating System and Application Software

System vs Application Software

Systems Software

- The set of programs that coordinates the activities and functions of hardware and other programs
- Each type of systems software is designed for a specific CPU and class of hardware

Application Software

- Helps users solve particular problems
- In most cases, resides on the computer's hard disk
- Can be stored on CDs, DVDs, or USB flash drives

© 2016 Cengage Learning®. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.

·	
Operating Systems	
A set of programs that controls computer hardware and	
acts as an interface with application programs	_
Ster Hindra	
Application program interface	
Standard of Green	
To the second	
0 2016 Cengage Learning [®] , All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.	
•	
Operating Systems Activities	
Controlling common computer hardware functions	
Providing a user interface and input/output management	
 Providing a degree of hardware independence 	
Managing system memory	
Managing processing tasks	
▶ Providing networking capability	
► Controlling access to system resources	
▶ Managing files	
0-2016 Compage. Learning [®] , All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.	
,	
Operating Systems: Processing Tasks	
 Five basic task management techniques Multiuser: allows two or more users to run programs at the same time on one 	
computer	
 Multiprocessing: supports running a program on more than one CPU Multitasking: allows more than one program to run concurrently 	
 Multithreading: allows different threads of a single Program to run 	
concurrently A thread is a set of instructions within an application that s independent of	
other threads	
Real time: responds to input instantly Word Processor Fromall Antivirus Antivirus	
Word Word Frocessor E-mail Web Antivirus	
Operating System	

\mathbb{R}^{d_1}

Mobile Operating Systems

Smartphone Operating System	Worldwide Market Share of Sales during 2Q 2013	Estimated Total Number of Applications Mid-2013	Estimated Rate of Increase in Number of New Applications
Google Android	56.5%	>1,000,000	800/day
Apple iPhone OS	39.6%	900,000	600/day
Microsoft Windows Mobile	3.3%	145,000	130/day
Blackberry Limited, Blackberry	2.9%	120,000	NA

© 2016 Cengage Learning®. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.

\mathbb{R}^{4}

Operating Systems - Utilities

O P 0. a.u	5 -/	- uu.
Utilities:	Utility	Description
	Backup	Archives files from the hard disk to a diskette or to tapes
Programs that manage	File defragmentation	Converts a fragmented file stored on your hard disk (one not stored contiguously) into one that will load and be manipulated more rapidly
computer	Disk and data recovery	Allows the recovery of damaged or erased information from hard and floppy disks
files and may be included in the	Data compression	Compresses data by substituting a short code for frequently repeated patterns of data, much like the machine shorthand used by court reporters, allowing more data to be stored on a disk
operating	File conversion	Translates a file from one format to another, so it can be used by an application other than the one used to create it
system or purchased	Antivirus	Monitors and removes viruses—lines of code designed to disrupt the computer's operation and make your life miserable
separately as	Device drivers	Allows new hardware added to your computer system, such as a game controller, printer, scanner, and so on, to function with your operating system
needed	Spam blockers	Monitors your incoming e-mail messages and filters or blocks the message from arriving
	Spyware detection and removal	Monitors and removes spyware from your computer (see Chapters 4 and 9)
	Media players	Allows music in formats such as MP3, WMA, or WAV or video in formats such as MPEG, AVI, ASF to be listened to or watched on a computer.

© 2016 Cengage Learning[®]. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.

71

Application Software

- ▶ Application programs:
- Interact with systems software and the systems software directs computer hardware to perform necessary tasks
- ▶ Help you perform common tasks, such as:
 - ▶ Creating and formatting text documents
 - ▶ Performing calculations
 - ▶ Managing information
 - ▶ Some applications are more specialized

© 2016 Cengage Learning®. All Rights Reserved	i. May not be scanned, copie
or duplicated, or posted to a publicly accessible	website, in whole or in part.

_	

Application Software

- ▶ Proprietary software:
 - One-of-a-kind program for a specific application, usually developed and owned by a single company
- Off-the-shelf software:
 - Existing software program that is purchased
 - ▶ Application service provider (ASP):
 - Company that can provide software, support, and computer hardware on which to run the software from the user's facilities over a network

© 2016 Cengage Learning[®], All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.

73

Proprietary Software Advantages and Disadvantages

Advantages	Disadvantages
You can get exactly what you need in terms of features, reports, and so on.	It can take a long time and significant resources to develop required features.
Being involved in the development offers control over the results.	In-house system development staff may be hard pressed to provide the required level of ongoing support and maintenance because of pressure to move on to other new projects.
You can modify features that you might need to counteract an initiative by competitors or to meet new supplier or customer demands.	The features and performance of software that has yet to be developed presents more potential risk.

D 2016 Cengage Learning[®]. All Rights Reserved. May not be scanne or duplicated, or posted to a publicly accessible website, in whole o 74

Off-the-Shelf Software Advantages and Disadvantages

Advantages	Disadvantages
The initial cost is lower because the software firm can spread the development costs over many customers.	An organization might have to pay for features that are not required and never used.
The software is likely to meet the basic business needs—you can analyze existing features and the performance of the package before purchasing.	The software might lack important features, thus requiring future modification or customization. This lack can be very expensive because users must adopt future releases of the soft-ware as well.
The package is likely to be of high quality because many customer firms have tested the software and helped identify its bugs.	The software might not match current work processes and data standards.

© 2016 Cengage Learning[®]. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.

e =	
Application Software: Software as a Service (SaaS) and Cloud Computing	
Software as a service (SaaS): Allows businesses to subscribe to Web-delivered	
business application software by paying a monthly service charge or a per-use fee	
 Can reduce expenses by sharing its running applications among many businesses 	
► Cloud computing:	
 Use of computing resources, including software and data storage, on the Internet (the cloud) rather than on local computers 	
0 2016 Coreason Learning [®] All Rights Reserved. May not be scanned, copied 7.6:	