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1. Consider the following sequence diagram and draw (to the extent possible) a class 

diagram showing method names for each class. 

 

Shape 

 

getShape() 
main() 

TestDrive 

locate () 

:Shape 

dothis() 

:Can 

doThat() 

doIt() 

:Can :Can 

begin () 

end () 

 

update () 
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2.  Consider the partial implementation of Chess in the UML class diagram below. 

Movement for a chess pieces is managed via the Strategy pattern.  Code for these classes 

is given on page 6. 

 

 

 
 

Consider that the following code executes at the start of the game: 

 

1. king = new King(); 

2. queen = new Queen(); 

3. king.move(); 

4. queen.move(); 

5. queen.setMovementBehaviour(new SingleForward); 

6. queen.move(); 

 

 

What is the object diagram at the time line 3 executes? 

What is the sequence diagram for lines 4, 5, and 6? 
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3. Suppose we are designing an application where Investor objects need to be informed 

of changes in the price of a Stock object. If the price of a stock changes then the stock 

must inform interested investors of this change. 

Each Stock has a name and two prices: previous price and new price. Assume the 

Stock class has a method, priceChanged() that is responsible for detecting a change in 

the stock price. Each Investor has a name and a phone number.  

Considering the implementation must adhere to the Observer design pattern: 

a) Draw a class diagram that includes classes, interfaces, associations, 

multiplicities, and methods. Use reasonable names for Observer. 

b) Beginning with priceChanged() executing, draw a sequence diagram to show 

the messages sent when the Walmart stock must inform two observers: Steve 

and Amanda, that the Walmart price has changed.  
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4. The following class diagram is for managing invoices. Note the design involves both 

the Decorator pattern and the Composite pattern. 

 
 

Consider an invoice with a single line item. The line item has a quantity of 3 for a 

bundle named “Special”. This bundle comprises two products:  

 a CD named O2014, with a price reduction of $10 and discount of 10%,  

 a CD named O2013 (not discounted or reduced).  

The bundle is discounted by 20%. 

 

Use a sequence diagram to show all messages sent when the invoice receives the 

getTotal() message and determines its total.  

 

Pseudocode for the pertinent methods is on page 5. 
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Pseudocode for Invoices, Products, Reductions, Discounts, Bundles 
 

 

 

getPrice() in Discount is:  

return  item.getPrice() * (1-(discount/100)) 

 

 

getPrice() in Reduction is:  

return  item.getPrice() - reducedBy 

 

 

getPrice() in Product is:  

return  price * quantity 

 

 

getPrice() in Bundle is:  

               total = 0 

for each item in bundle: 

      total = total + item.getPrice() 

return  total 

 

 

getTotal()  in Invoice is: 

total = 0 

for each item: 

total = total + item.getPrice() 

return total 
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Chess Code 

 

public class Character { 

    private MovementBehaviour movementBehaviour; 

    String move() { 

       return movementBehaviour.move(); 

    } 

    public void setMovementBehaviour(MovementBehaviour movementBehaviour) { 

        this.movementBehaviour = movementBehaviour; 

    } 

} 

 

public class King extends Character { 

    public King() { 

        setMovementBehaviour(new SingleForward()); 

    } 

} 

 

public class Queen extends Character { 

    public Queen() { 

        setMovementBehaviour(new DiagonalMovement()); 

    } 

} 

 

public interface MovementBehaviour { 

    String move(); 

} 

 

public class SingleForward implements MovementBehaviour { 

    public String move() { 

       return "move one step forward"; 

    } 

} 

 

public class DiagonalMovement implements MovementBehaviour { 

    public String move() { 

        return "Moving Diagonally"; 

    } 

} 

 


