ACS-1803 Introduction to Information Systems

Instructor: Victor Balogun

Data Management

Lecture Outline 2, Part 2

Data Entities, Attributes, and Items

Entity:

- Things we store information about. (i.e. persons, places, objects, events, etc.)
- Have **relationships** to **other entities** (i.e. the entity *Student* has a relationship to the entity *Grades* in a University Student database
- General class of people, places, or things (objects) for which data is collected, stored, and maintained

Attribute:

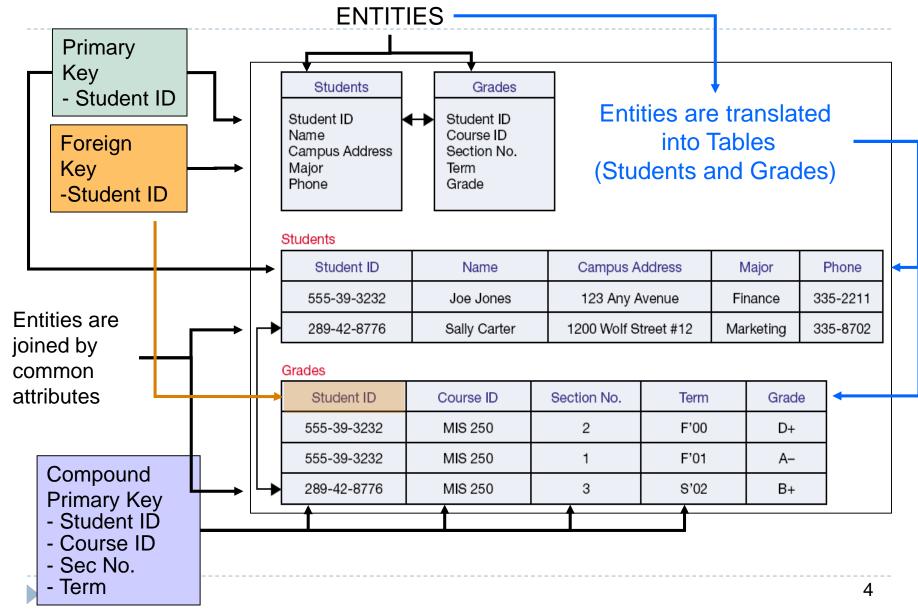
These are pieces of information (characteristics) about an entity (i.e. Student ID, Name, etc. for the entity Student)

Data item:

Specific value of an attribute

Data Entities, Attributes, and Items

Employee #	Last name	First name	Hire date	Dept. number
005-10-6321	Johns	Francine	10-07-1997	257
549-77-1001	Buckley	Bill	02-17-1979	632
098-40-1370	Fiske	Steven	01-05-1985	598



KEY FIELD

ATTRIBUTES (fields)

The key field is the employee number. The attributes include last name, first name, hire date, and department number.

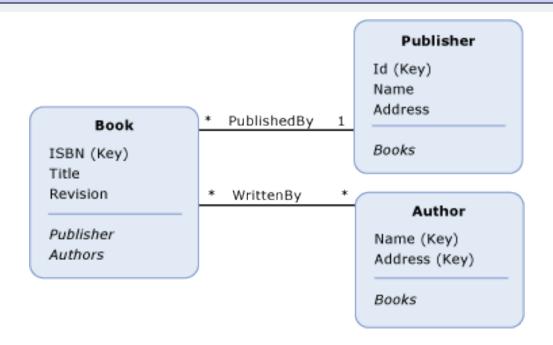
Data Entities, Attributes, Items, Keys

Data Entities, Attributes, and Items

Normalization

- Process of streamlining complex groups of data to:
 - Minimize redundant data elements.
 - ▶ Minimize awkward many-to-many relationships.
 - Increase stability and flexibility.

Referential integrity rules


- Used by relational databases to ensure that relationships between coupled tables remain consistent.
- For example: when one table has a foreign key that points to another table, you may not add a record to the table with foreign key unless there is a corresponding record in the linked table.

Designing Databases – Data Model

Data Model

- A map or diagram that represents entities and their relationships
- Used by Database Administrators to design tables with their corresponding associations

Designing Databases – Associations

- Define the relationships one entity has to another
- Determine necessary key structures to access data
- Come in three relationship types:

One-to-one

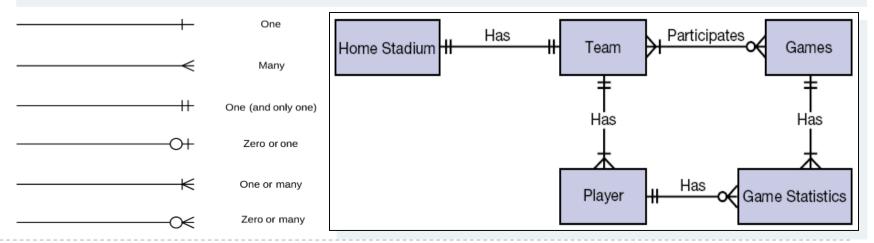
Table 1		Tab	le 2
ID	VALUE	 FK	VALUE
1	Α	1	Α
2	В	2	В
3	С	3	С

One-to-many

Tat	ole 1	Tab	ile 2
ID	VALUE	FK	VALUE
1	Α	1	Α
2	В	1	Α
3	C	2	В

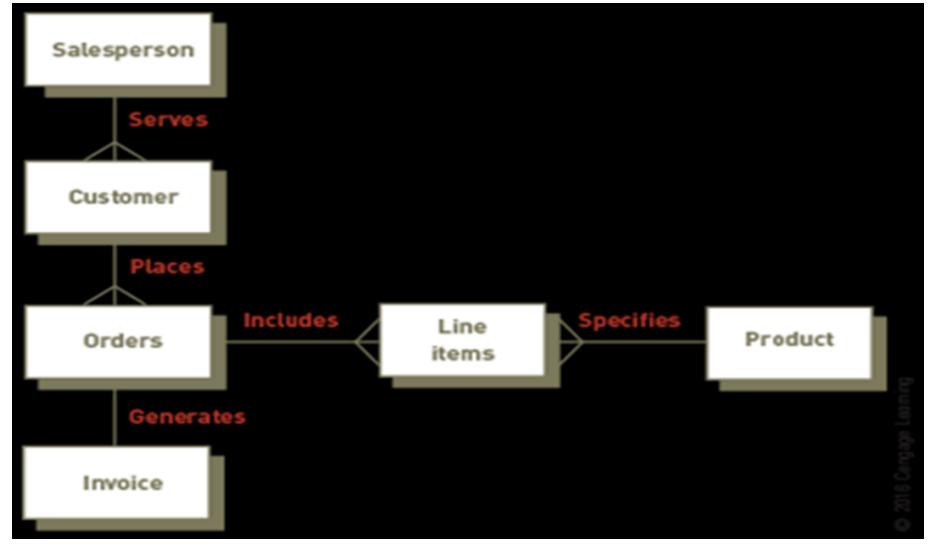
Many-to-many

Tab	le 1]	Tab	le 2
ID	VALUE		FK	VALUE
1	A		2	В
1	A		1	Α
2	В		1	Α


Designing Databases - Associations

Entity Relationship Diagram (ERD)

- Diagramming tool used to express entity relationships
- Very useful in developing complex databases


Example

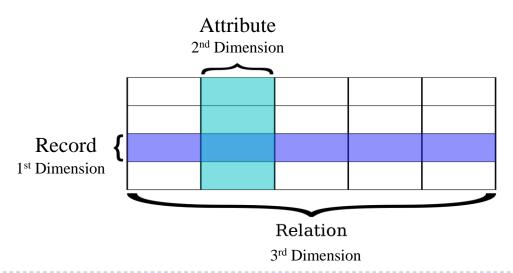
- Each Home Stadium has a Team (One-to-One)
- Each Team has Players (One-to-Many)
- Each Team participates in Games
- For each Player and Game there are Game Statistics

ER Diagram for a Customer Order Database

Development of ER diagrams helps ensure that the logical structure of application programs is consistent with the data relationships in the database.

Simplified ER Diagram

This diagram shows the relationship among the Manager, Department, and Project tables.


Relational Database

- Data set up as a centralized collection of tables
- ▶ Tables are linked by common columns of data
- ▶ Tables are designed together to minimize repetition
- This is the most common database structure
- This is the one used in microcomputer databases and many larger ones too

The Relational Model

- The most common type of database model used today in organizations
- Is a three-dimensional model compared to the traditional two-dimensional database models
 - Rows (first-dimension)
 - Columns (second-dimension)
 - Relationships (third-dimension)
- The third-dimension makes this model so powerful because any row of data can be related to any other row or rows of data

Relational Model – Example 1

customer- name	social- security	customer- street	customer- city	account- number
Johnson	192-83-7465	Alma	Palo Alto	A-101
Smith	019-28-3746	North	Rye	A-215
Johnson	192-83-7465	Alma	Palo Alto	A-201
Jones	321-12-3123	Main	Harrison	A-217
Smith	019-28-3746	North	Rye	A-201

account-number	balance
A-101	500
A-201	900
A-215	700
A-217	750

One-to-One

Relational Model – Example 2

Department Records Department No Dept Name Location Dean Dept A Dept B Dept C One-to-Many Instructor Records Dept No Instructor No Inst Name Title Salary Dept A Inst 1 Dept B Inst 2 Dept C Inst 3 Dept A Inst 4

Figure 3.12 With the relational model, we represent these two entities, department and instructor, as two separate tables and capture the relationship between them with a common column in each table.

Data Modeling and Database Characteristics

- When building a database, an organization must consider:
 - Content: What data should be collected and at what cost?
 - Access: What data should be provided to which users and when?
 - Logical structure: How should data be arranged so that it makes sense to a given user?
 - Physical organization: Where should data be physically located?

Data Modeling

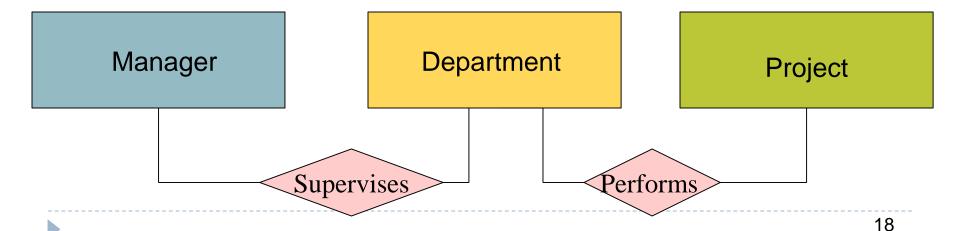
- Building a database requires two types of designs:
 - Logical design:
 - Abstract model of how data should be structured and arranged to meet an organization's information needs
 - Physical design:
 - Starts from the logical database design and finetunes it for performance and cost considerations
- Planned data redundancy:
 - Done to improve system performance so that user reports or queries can be created more quickly

Data Modeling (continued)

- Data model:
 - Diagram of data entities and their relationships
- Enterprise data modeling:
 - Starts by investigating the general data and information needs of the organization at the strategic level
- Entity-relationship (ER) diagrams:
 - Data models that use basic graphical symbols to show the organization of and relationships between data

Data Modeling Illustration

First, list data fields


• SSN

- Dept. name
- Last Name
- Project Number
- First name
- Description
- Hire Date
- Dept. Number

Next, identify the relationships and design the tables

- Manager
- SSN
- •L_Name
- •F_Name
- Hire Date
- •Dept.
- Number

- Dept Project
- •DeptNumber •ProjNumber
- •DeptName •ProjDescript

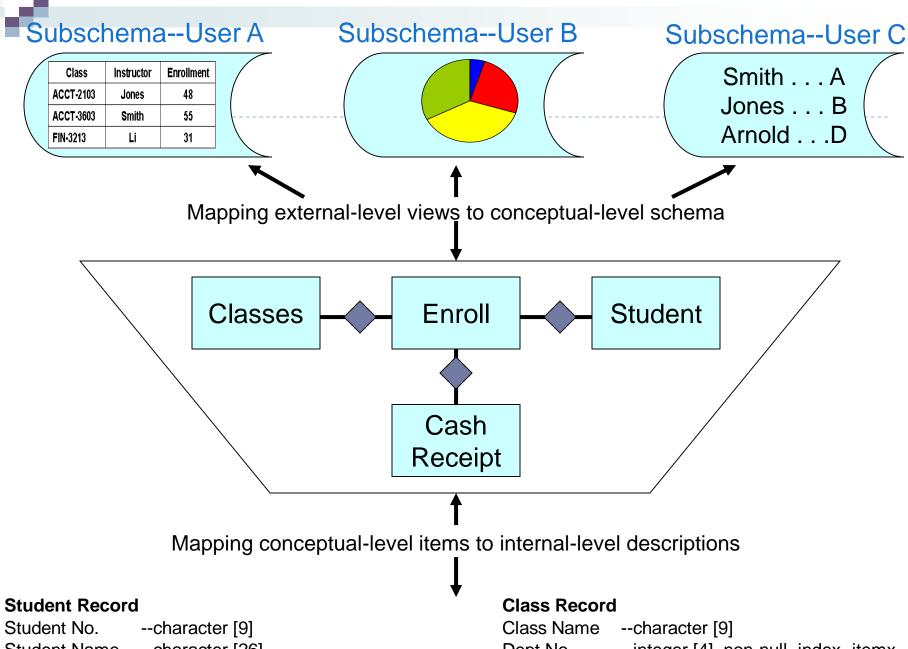
Example Relational Database Model

Project Table Department Table

Project	Description	Dept. number
155	Payroll	257
498	Widgets	632
226	Sales manual	598

Dept.	Dept. name	Manager SSN
257	Accounting	005-10-6321
632	Manufacturing	549-77-1001
598	Marketing	098-40-1370

Manager Table


SSN	Last name	First name	Hire date	Dept. number
005-10-6321	Johns	Francine	10-07-2013	257
549-77-1001	Buckley	Bill	02-17-1995	632
098-40-1370	Fiske	Steven	01-05-2001	598

Providing a User View

Schema:

- Used to describe the entire database
- Serves as the "blue print" to the design of the dbms and focuses on the relationships between entities.
- Can be part of the database or a separate schema file
- Three examples of schemas are shown on the next slide:
 - (I) External Level Subschema (end user view) is focused at the end user level. It serves as a map to the Conceptual View to the design of the DBMS.
 - ▶ (2) Conceptual Schema (design view) and the (3) Internal Level Schema (data dictionary view) is used by database analysts and design specialists to map the DBMS.

Student Name --character [26]

SAT Score --integer [2], non-null, index=itemx

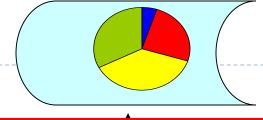
Dept No. --integer [4], non-null, index=itemx

Course No. --integer [4], non-null, index=itemx

Subschema--User A

 Class
 Instructor
 Enrollment

 ACCT-2103
 Jones
 48


 ACCT-3603
 Smith
 55

 FIN-3213
 Li
 31

Subschema--User B

Smith . . . A Jones . . . B Arnold . . . D

Subschema--User C

(1)

Mapping external-level views to conceptual-level schema

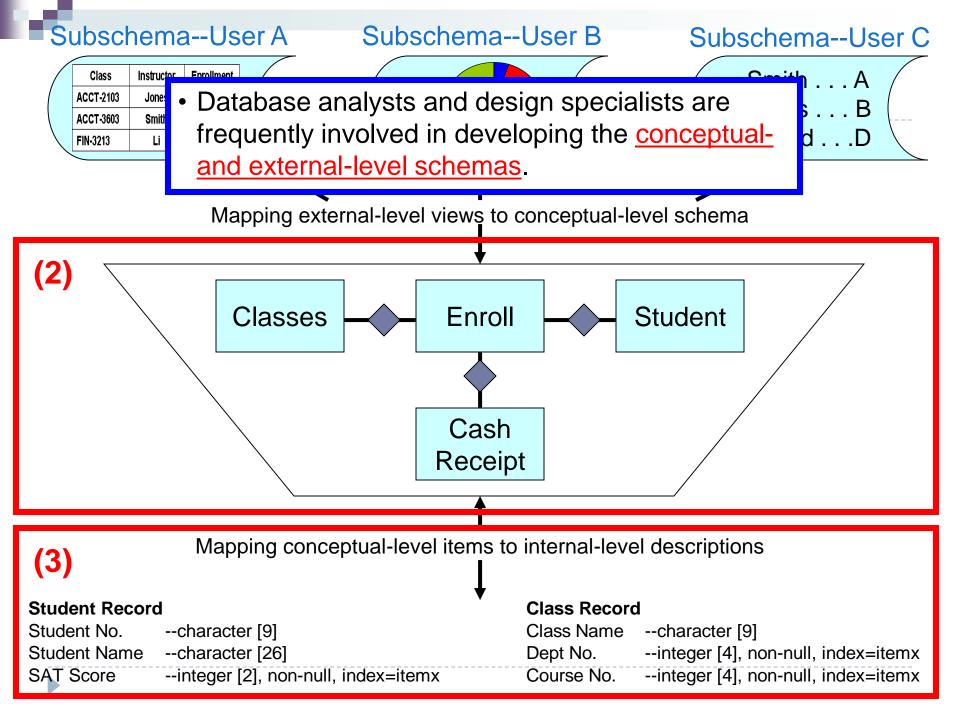
 An employee's access to data should be limited to the <u>subschema of data that is relevant to the</u> <u>performance of his/her job</u>.

> Cash Receipt

Mapping conceptual-level items to internal-level descriptions

Student Record

Student No. --character [9]
Student Name --character [26]

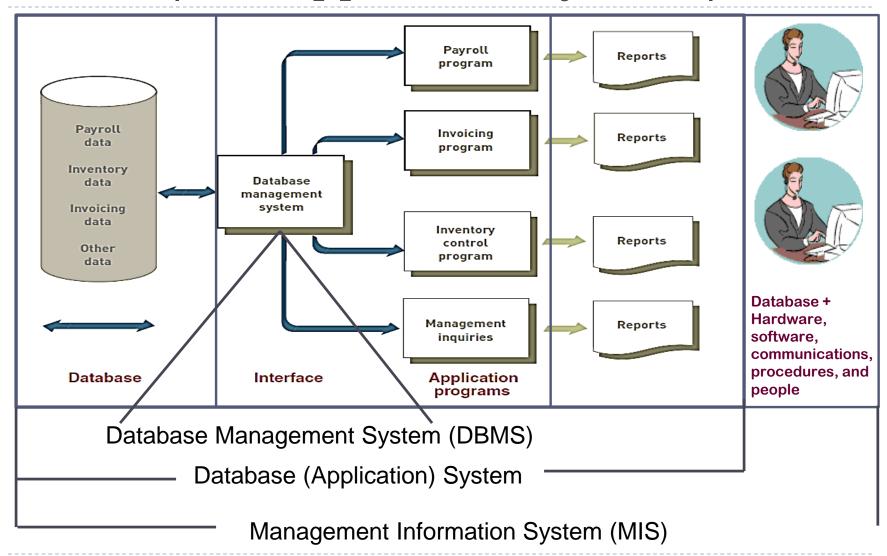

SAT Score --integer [2], non-null, index=itemx

Class Record

Class Name --character [9]

Dept No. --integer [4], non-null, index=itemx

Course No. --integer [4], non-null, index=itemx



DBMS | DB Application System | MIS

- The information system needs raw data which is stored on disk as a relational database.
- The relational database is managed by Database Management System (DBMS) software. The system calls the DBMS (behind the scenes) and the DBMS extracts data from the database.
- DBMS is a group of programs used as interface between a database and application programs, or a database and the user
- Database (Application) System is the combination of the database, the DBMS, and the application programs that access the database
- Management Information System (MIS) is the database system coupled with a set of hardware, software, telecommunications, people, and procedures. Programs which are part of the information system then transform the raw data to useful information

DBMS | DB Application System | MIS

Database Management System (DBMS)

- System software that sets up the database structure ('skeleton' on disk according to a certain model, fills the structure with data and retrieves the data to provide meaningful information)
- Parts of DBMS:
 - Data Dictionary: defines each field and record, explains what each field means and who is authorized to update it
 - Query language: used to extract data that satisfy certain criteria from a database. Used to develop query retrieval commands and reports – which are the two main forms of output from a DBMS

Data Dictionary

- Is a document that database designers prepare to help individuals enter data
- Provides several pieces of information about each attribute in the database including:
 - Name
 - Key (is it a key or part of a key?)
 - Data Type (date, alphanumeric, numeric, etc.)
 - Valid Value (the format or numbers allowed)

Can be used to enforce Business Rules which are captured by the database designer

to prevent illegal or illogical values from entering the database.

(e.g. who has authority to

enter certain kinds of data in specific files)

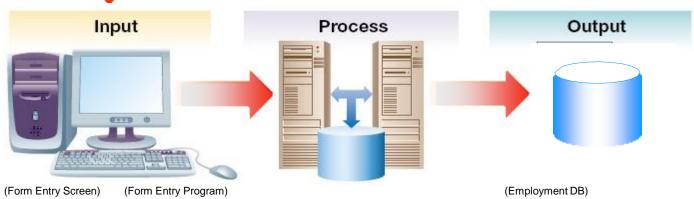
	Instructor	_		
Semin	ar			
Student	•		· ·	\square
Attribute	Length	Туре	Rules	
Name Email Addres Phone # Address City State	s 40 50 10 30 20 2	Alpha Mixed Numeric Mixed Alpha Alpha	At least 2 words Must contain @ Reject all "555" Format - ### alpha none Must be a valid state	

DBMS Functions

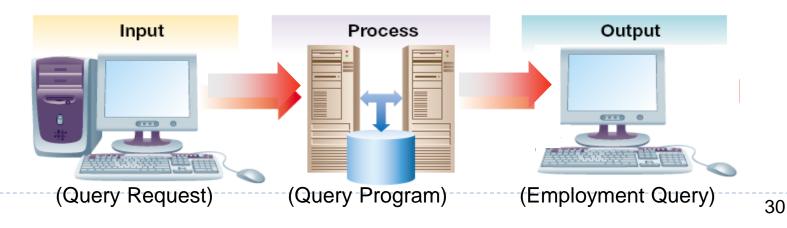
- A DBMS enables interactions with the database through activities such as:
 - Data Dictionary Management
 - Data Transformation and Presentation
 - Security Management
 - Backup and Recovery Management
 - Data Integrity Management
 - Database Access Languages and Application Programming Interfaces
 - Database Communication Interfaces
 - Transaction Management
 - Data entry, queries, etc.

DBMS – Data Entry

Employment Applications



Enter Forms


Example

- Data is entered from paper employment applications into a form entry screen
- The entry forms are designed to match the paper forms for ease of entry
- The form data is processed by the entry program and then stored in the employment database

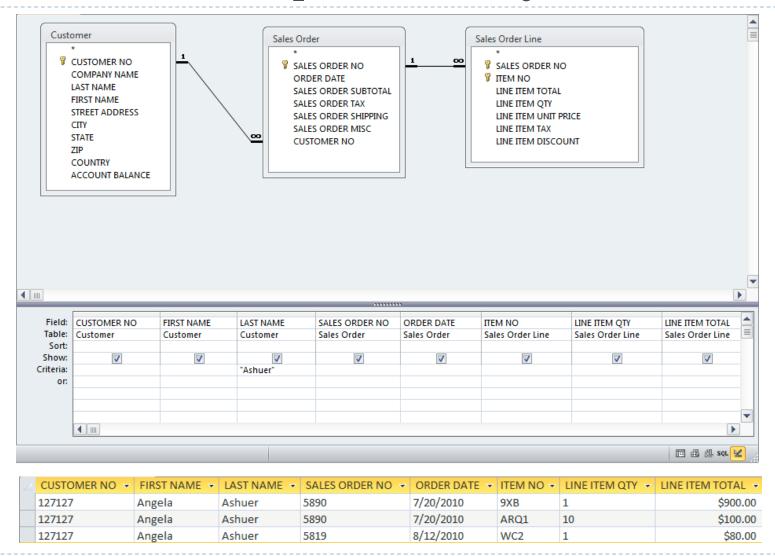
DBMS - Queries

- Query A way to extract data from the database
 - Focuses on providing appropriate parameters to select the information required
- SQL (Structured Query Language)
 - A language to select and extract data from a database
 - The industry standard language for relational databases
- QBE (Query by Example)
 - A technique that allows a user to design a query on a screen by dragging and placing the query field in the desired locations

DBMS – Query Language

- e.g., SQL: Structured Query Language:
 - Popular language for making requests to a relational dbms

```
SELECT LAST_NAME, FIRST_NAME, CITY
FROM APPLICANT
WHERE APPLICATION_DATE >= 'August 19, 2012'
```


SELECT LAST_NAME, FIRST_NAME, CITY SALARY

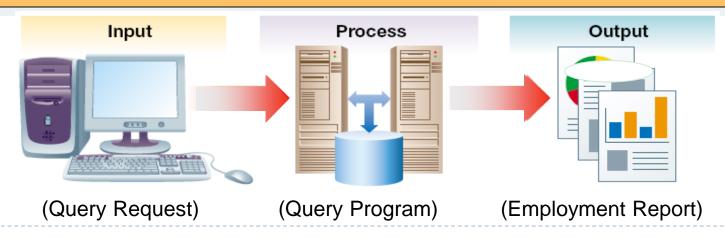
FROM EMPLOYEE WHERE DEPARTMENT = '4530' AND SALARY > 25000

DBMS – Example of Query Results

wnum		wname 🕶	brith_date 🕶	rate →	skill	Ŧ	certified	¥
	100	James Langdon	2/22/1953	\$12.00	Painter		V	
	200	Rekha Hindoch	1/8/1960	\$30.00	Engineer		V	
	246	Pierre Garceau	7/19/1947	\$18.50	Electrician		✓	
	300	Mary Clutterha	12/30/1950	\$12.50	Painter		✓	
	395	Donna Graham	9/27/1956	\$21.00	Plumber		✓	
	452	Isabella Fong	5/12/1957	\$15.00	Electrician			
	453	Rosita Cordeiro	8/22/1955	\$12.50	Painter			
	565	Ernest Schneid	10/31/1957	\$18.00	Electrician		✓	
	664	Maurice Favrea	5/17/1962	\$12.00	Plumber			
	743	Oleh Markiw	1/1/1959	\$15.00	Carpenter		✓	
	754	Emil Juliano	9/9/1949	\$15.00	Carpenter		✓	
	887	Salim Agarwal	11/20/1964	\$17.00	Carpenter		V	
	0			\$0.00				

DBMS – Example of Query Results

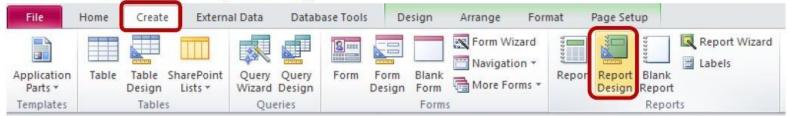
DBMS – Report


Report – A database function that extracts and formats information from a database for printing and presentation

Report Generator

- A specialized program that uses SQL to retrieve and manipulate data (aggregate, transform, or group)
- Reports are designed using standard templates or can be custom generated to meet informational needs

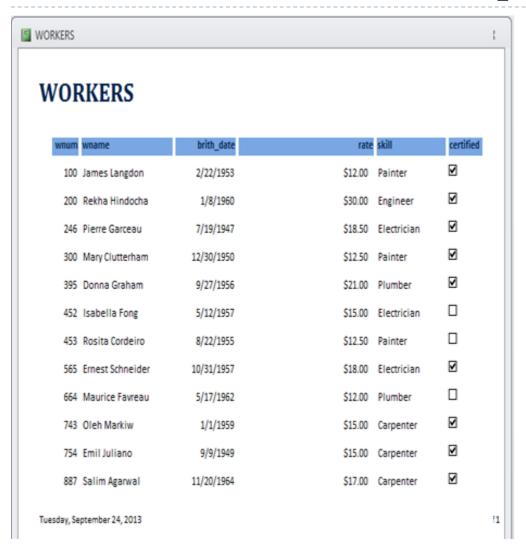
Example – Report on applicants entered in the last 30 days


- Report parameters are selected in the report request screen
- The database program uses SQL to query and present the result

DBMS – Designing a Report

- To create reports, the developer must first select the table(s) or queries(s) upon which the report will be based.
- All fields will then become available to the developer to include on the report:
- The developer formats and enters the report header, detail, and footer. The required fields are placed in the desired location on the report layout.

1. On the Create tab, click Report Design.


2. Click on the Add Existing Fields button, on the Design tab, to see a list of tables/fields.

DBMS – Structured Report Design

DBMS – Structured Report Results

EspressoCoffee Annual Sales Report

Sales Region	Quarter	Espresso Sales
Austria	1	\$610,911.00
	2	\$901,574.00
	3	\$465,460.00
	4	\$671,190.00
	Total	\$2,649,135.00
Canada	1	\$635,144.00
	2	\$777,186.00
	3	\$338,432.00
	4	\$226,018.00
	Total	\$1,976,780.00
China	1	\$61,241.00
	2	\$643,284.00
	3	\$834,940.00
	4	\$497,871.00
	Total	\$2,037,336.00
France	1	\$969,279.00
	2	\$61,797.00
	3	\$353,502.00
	4	\$779,811.00
	Total	\$2,164,389.00

Implementing the Concepts

- After having reviewed all the basic database models in the last section, the following section will focus on a practical process to set up a database
- Databases refer to the way in which data is set up in the background (on disk) on information systems
- The purpose of this is that application programs are able to take such data and produce required results and reports

Steps to set up a Database

- First: Speak to people who will use the information system
 - go to every person that will need any kind of output from the computer when doing his / her job
 - Find out from them what data fields do they need for different reports that they will use
 - List those fields (data items), and write them all down
- The database is going to be set up as a relational database (most likely)
- Always think of the relationships between fields

Data Requirements Analysis

- Example: School information System
- ▶ Three different users tell you their information needs:
 - Person I.
 - A report displaying Student number, Student Name, Address, and City for all students
 - A report showing Student Name, Student phone, Student Major, ordered by student name
 - Person 2
 - Student Name, Course name and grade that each student took last term
 - Major ,St name and phone number for all students
 - Person 3
 - Course name, Course number, Student Name and Grade for each student
 - Course name, course number for each course offered in the term

Data Requirements Analysis

- Example: School information System
- ▶ Three different users tell you their information needs:
 - Person I.
 - A report displaying Student number Student Name Address and City for all students
 - A report showing Student Name, Student phone Student Major, ordered by student name
 - Person 2
 - Student Name Course name and grade that each student took last term
 - Major ,St name and phone number for all students
 - Person 3
 - Course name, Course number, Student Name and Grade for each student
 - Course name, course number for each course offered by enrolment date over the past three years

100

Data Requirements Analysis

- Example: School information System
- The director of XYZ School would like to assess the initial design of the system using the following student, course, and grade information:
 - Student #: 1234; Student: A. Lam; Address: 491 Castle, Wpg; Phone: 204-258-6987; Major: Economics; Course: 1803, Computers, Grade: A; Course: 1901, Pascal, Grade: B; Course 2002, Finance, Grade A
 - Student #: 9876; Student: R. Kelly; Address: 22 Miller Cres, Wpg; Phone: 204-258-7563; Major: Biology; Course: 2002, Finance, Grade: B; Course: 3421, Entomology, Grade: B; Course 4523, Zoology, Grade: C
 - Student #: 4567; Student: J. Ng; Address: 399 High St.; Phone: 204-785-2145; Major: Business; Course: 1304, Accounting, Grade: C; Course: 2233, Marketing, Grade: A.

Example: School Database

Data Items:

- Student Number,
- Student Name,
- Student Street address,
- Student City
- Student Phone,
- Student major area (only one),
- for each course the student takes, the Course Number, Course Name, Enrolment Date, and Grade

Field Name	STNUMBER	STNAME	STREET	CITY	STPHONE	MAJOR	CNO	CNAME	ENROL	GRADE
Туре	Text	Text	Text	Text	Number	Text	Text	Text	Numeric	Text
Length	4	25	25	20	10	15	4	20	8	2

Insert Data into your Table

Insert all data records one by one:

ST Number	St name	Street	City	Major	Phone Number	Course Name	Course Number	Enrolment	Grade
1234	Lam A	491 Castle	Wpg	Economics	208568974	Computers	1803		Α

Ensure all of the data attributes have been identified and populated in the table. If there are no data elements for a specific attribute, then enter data ______

St Number	St Name	Street	City	Major	Phone Number	Course Number	Course Name	Enrolment	Grade
1234	Lam A	491 Castle	Wpg	Economics	2042586987	1803	Computers	090912	Α
9876	Kelly R	22 Miller Cr	Wpg	Biology	2042587563	2002	Finance	050112	В
4567	Ng J	399 High St	Wpg	Business	2047852145	1304	Accounting	050112	С

Storing Meaningful Information

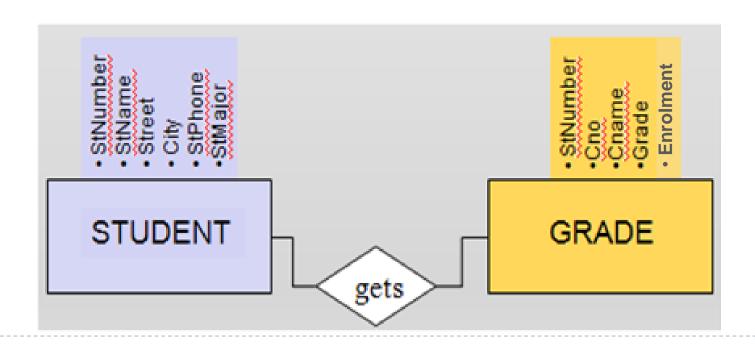
- In order to store data on disk meaningfully, we notice we must set it up first, at least in a file so that we can get a variety of useful information out
- storing just characters alone in a computer won't do; we need to group them
- storing just fields alone in a computer won't do; we need to group them.
- storing just one record alone in a computer won't do; we need a group of several records that follow the same layout and are somehow related (say students of the same class)

Inefficient Data Storage

STNumber	STName	Address	City	Major	StPhone	Cnumber	Cname	Enrolment	Grade
1234	Lam A	491 Castle	Wpg	Economics	2042586987	1803	Computers	090912	A
1234	Lam A	491 Castle	Wpg	Economics	2042586987	1901	Pascal	080911	В
1234	Lam A	491 Castle	Wpg	Economics	2042586987	2002	Finance	060111	Α
9876	Kelly R	22 Miller Cr	Wpg	Biology	2042587563	2002	Finance	050112	В
9876	Kelly R	22 Miller Cr	Wpg	Biology	2042587563	3421	Entomology	080911	В
9876	Kelly R	22 Miller Cr	Wpg	Biology	2042587563	4523	Zoology	070910	С
4567	Ng J	399 High St	Wpg	Business	2047852145	1304	Accounting	050112	С
4567	Ng J	399 High St	Wpg	Business	2047852145	2233	Marketing	080911	Α

Inefficient Data Storage

- Problems:
 - Data being Repeated
 - Inefficient Storage
 - will take more space
 - Process for storing data will take longer
 - Inefficient Data retrieval
 - Data will take longer to be found
- Better to keep data in multiple tables (files)
 - Normalize the database!


School Database

- Determine the relationships when you have all the fields listed
- Group related fields into one table
 - Use logic, think about relationships
 - On this example, all fields with a one-to-one relationship go in one table, and all fields that have a one-to-many relationship in another table
- Determine what fields will be links between the tables
- Create your Data Model

Relationships

- When stored on Disk, Student Number is the common column linking data in the STUDENT table with data in the GRADES table
- ▶ An entity relationship (ER) diagram of this set up would be:

10

School Database

Student
StNumber
StName
Street
City
StPhone
StMajor

1234 LAM A 491 Castle Wpg 2042586987 Economics 9876 KELLY R 222 Miller Cr Wpg 2042587563 Biology	STNUMBER +	STNAME -	STREET *	CITY -	STPHONE -	STMAJOR -
10	1234	LAM A	491 Castle	Wpg	2042586987	Economics
45 CZ NIC L 200 HIGH CT W/v - 2047052445 Business	9876	KELLY R	222 Miller Cr	Wpg	2042587563	Biology
4567 NG J 399 HIGH ST Wpg 2047852145 Business	4567	NG J	399 HIGH ST	Wpg	2047852145	Business

Grade
Student
Course Number
Course Name
Enrolment
Grade

STNUMBER -	COURSENUN -	COURSENAME -	ENROLMENT •	GRADE	•
1234	1803	Computers	090912	A	
1234	1901	Pascal	080911	В	
1234	2002	Finance	060111	A	
4567 1304		Accounting	050112	С	
4567 2233		Marketing	080911	A	
9876	2002	Finance	050112	В	
9876 3421		Entomology	080911	В	
9876	4523	Zoology	070910	С	

• This is a normalized database.

Keys

- Primary Key Student Table
 - Student Number
- ▶ Foreign Key Grade Table
 - Student Number
- Compound Primary Key Grade Table
 - Student Number + Course Number + Enrolment

м

School Database

Primary Key

<u> </u>		
StN	lum	her

Student

StName

Street

City

StPhone

StMajor

Grade

Student

Course Number

Course Name

Enrolment

Grade

, ,	•				
STNUMBER -	STNAME -	STREET -	CITY -	STPHONE -	STMAJOR -
1234	LAM A	491 Castle	Wpg	2042586987	Economics
9876	KELLY R	222 Miller Cr	Wpg	2042587563	Biology
4567	NG J	399 HIGH ST	Wpg	2047852145	Business

Foreign Key

COURSENUN -	COURSENAME	*	ENROLMENT •	GRADE	*
1803	Computers		090912	A	
1901	Pascal		080911	В	
2002	Finance		060111	A	
1304	Accounting		050112	С	
2233	Marketing		080911	A	
9876 2002			050112	В	
9876 3421			080911	В	
4523	Zoology		070910	С	
	1803 1901 2002 1304 2233 2002 3421	1803 Computers 1901 Pascal 2002 Finance 1304 Accounting 2233 Marketing 2002 Finance 3421 Entomology	1803 Computers 1901 Pascal 2002 Finance 1304 Accounting 2233 Marketing 2002 Finance 3421 Entomology	1803 Computers 090912 1901 Pascal 080911 2002 Finance 060111 1304 Accounting 050112 2233 Marketing 080911 2002 Finance 050112 3421 Entomology 080911	1803 Computers 090912 A 1901 Pascal 080911 B 2002 Finance 060111 A 1304 Accounting 050112 C 2233 Marketing 080911 A 2002 Finance 050112 B 3421 Entomology 080911 B

This is a normalized database

School Database

Student	Stu	de	nt
---------	-----	----	----

StNumber

StName

Street

City

StPhone

StMajor

Grade

Student

Course Number

Course Name

Enrolment

Grade

STNUMBER -	STNAME -	STREET -	CITY -	STPHONE •	STMAJOR -
1234	LAM A	491 Castle	Wpg	2042586987	Economics
9876	KELLY R	222 Miller Cr	Wpg	2042587563	Biology
4567	NG J	399 HIGH ST	Wpg	2047852145	Business

Compound Primary Key

	· · · · · · · · · · · · · · · · · · ·				
STNUMBER -	COURSENUN -	COURSENAME -	ENROLMENT •	GRADE	*
1234	1803	Computers	090912	A	
1234	1901	Pascal	080911	В	
1234	2002	Finance	060111	Α	
4567	1304	Accounting	050112	С	
4567	2233	Marketing	080911	A	
9876	2002	Finance	050112	В	
9876	3421	Entomology	080911	В	
9876	4523	Zoology	070910	С	

This is a normalized database

Data Reporting - Reports

- Example: School information System
- ▶ Three different users tell you their information needs:
 - Person I.
 - A report displaying Student number, Student Name, Address, and City for all students
 - A report showing Student Name, Student phone, Student Major, ordered by student name
 - Person 2
 - Student Name, Course name and grade that each student took last term
 - Major ,St name and phone number for all students
 - Person 3
 - Course name, Course number, Student Name and Grade for each student
 - Course name, course number for each course offered by enrolment date over the past three years

м

Report – Courses by Enrolment

Courses by Enrolment Date for XYZ School

Enrol Date	Course No	Course Name
07-Sep-10	4523	Zoology
Total Number	er of Courses:	I
06-Jan- I I	2002	Finance
Total Number	I	
08-Sep-11	1901	Pascal
	2233	Marketing
	3421	Entomology
Total Number of Courses:		3
05-Jan-12	1304	Accounting
Total Number of Courses:		I
09-Sep-12	1803	Computers
Total Number		

Data Reporting - Query

Person I

- A report displaying Student number, Student Name, Address, and City for all students
- A report showing Student Name, Student phone, Student Major, ordered by student name

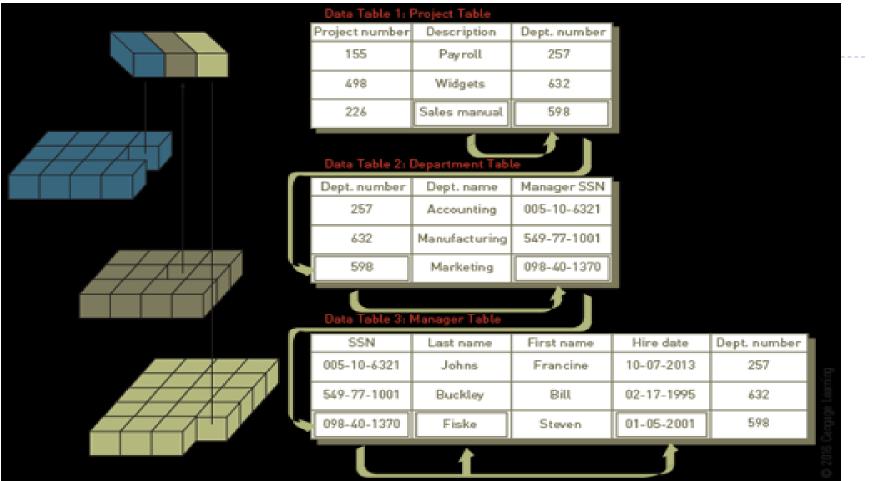
Person 2

- Student Name, Course name and grade that each student took last term
- Major ,St name and phone number for all students

Person 3

- Course name, Course number, Student Name and Grade for each student
- Course name, course number for each course offered by enrolment date over the past three years

Query Reporting


A report displaying Student number, Student Name, Address, and City for all students

St Number	St Name	Street	City
1234	Lam A	491 Castle	Wpg
9876	Kelly R	22 Miller Cr	Wpg
4567	NgJ	399 High St	Wpg

Student Name, Course name and grade that each student took last term

STName	Cname	Enrolment	Grade
Lam A	Pascal	080911	В
Kelly R	Entomology	080911	В
NgJ	Marketing	080911	Α

Linking Data Tables to Answer an Inquiry

For finding the name and hire date of the manager working on the sales manual project, the president needs three tables: Project, Department, and Manager. The project description (Sales manual) leads to the department number (598) in the Project table, which leads to the manager's SSN (098-40-1370) in the Department table, which leads to the manager's name (Fiske) and hire date (01-05-2001) in the Manager table

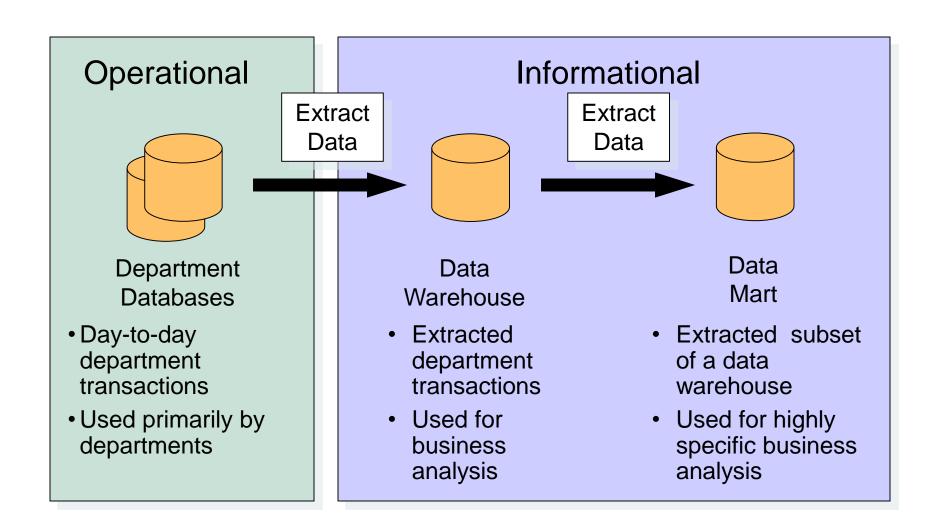
Using MS Access as a DBMS

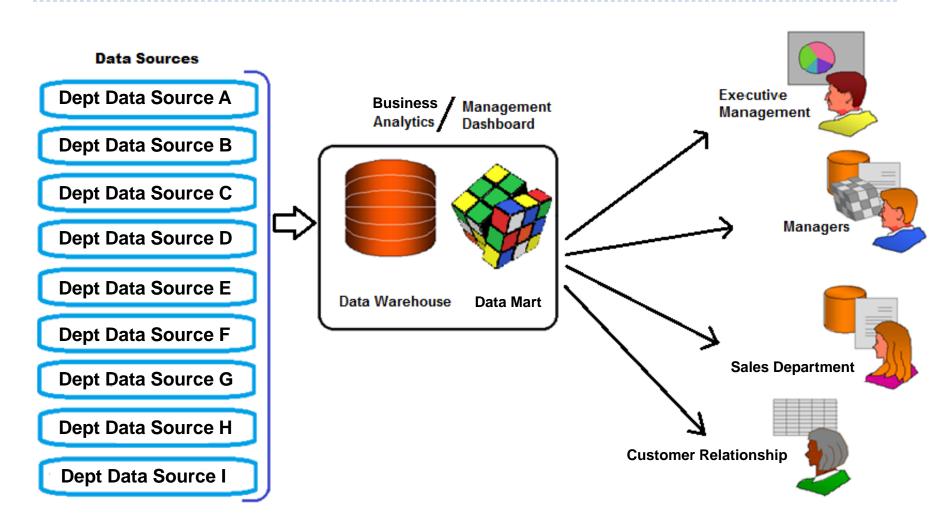
- Manages the database (e.g. Microsoft Access)
- To use Microsoft Access you must have your design done first.
- When setting up the database as part of the DBMS, the database design schema (Table Structures, Primary Keys, Relationships) is defined before data is entered.
- When setting up the database system, the application interface screens are defined that utilize the DBMS to update the database tables.
- See Supplement Notes "Using Access Screens" for detail example

Using MS Access as a DBMS

- MS Access can be used as an information system developer tool.
- We use it to build a customized information system for some specific purpose
- The system will have up-front: its own menus, input screens, output (query) screens, and reports
- In the background, it will have a database with related tables, and programs that take the raw data from the database and convert it to the required queries and reports
- It will also have controls, i.e. mechanisms to ensure that the output is correct and that the data is safe from accidental or deliberate destruction.
- The information system will be set up on computers and a network and will provide an effective method for users to interface with the database without ever knowing they are utilizing MS Access
- See Supplement Notes "Using Access Screens" for detail example

Data warehouse:


 Database that holds business information from many sources in the enterprise


Data mart:

Subset of a data warehouse

Data mining:

Information-analysis tool that involves the automated discovery of patterns and relationships in a data warehouse

Predictive analysis:

- Form of data mining that combines historical data with assumptions about future conditions to predict outcomes of events
- Used by retailers to upgrade occasional customers into frequent purchasers
- Software can be used to analyze a company's customer list and a year's worth of sales data to find new market segments

Data Mining Applications

- Branding and positioning of products and services
 - Enable the strategist to visualize product behavior in different markets, while condensing the data in dimensions that are easily analyzed
- Customer Churn
 - Predict current customers who are likely to switch to a competitor
- Direct Marketing
 - Identify customer prospects most likely to respond to direct marketing practices
- Fraud detection
- Market Segmentation
- Trend analysis (sales, spending, promotions, etc.)