
1

Literals, Variables, Data types

• Constants in Java are called literals.

• 123

• 123.45

• ’a’

• ‘&’

• "Gosling“

• “this is a line”

• true

• false

Int
double

char

String

boolean

Later on we’ll see another way to define constants…..

Literals, Variables, Data types

Variables

• Named location in memory

• Program controls its contents:

• Initialize, change, display, access

• Java is strongly typed

• You must declare the type of each variable … cannot
change this later

2

Literals, Variables, Data types

Data types: 8 primitive types

Need to know int, double, char, boolean

Numeric

int 100 234 0

long 100L 234L 0L

float 100.12f 234.0f 0.0f

double 100.12 234.0 0.0

char ‘a’, ‘b’, … ‘A’, ’B’,… ‘0’, ‘1’, ‘2’, … ‘~’, ‘@’, ‘#’, …

boolean true, false

int and double are default
types for numeric literals

3

Literals, Variables, Data types

Integer numeric types vary according to
the amount of memory

smallest/largest values

4

Literals, Variables, Data types

Integer numeric types vary according to
Operators for arithmetic expressions

Addition

Subtraction

Multiplication

Division

Modulo

Sample program : IntegerArithmetic.java

5

Modulo

Literals, Variables, Data types

Decimal numeric types vary according to
the amount of memory

smallest/largest values

6

Literals, Variables, Data types

Decimal - operators for arithmetic expressions
Addition

Subtraction

Multiplication

Division

Sample program : FuelConsumption.java

7

10.0 / 4.0

Literals, Variables, Data types

Decimal – values are often approximations

Sample program : Approximations.java

8

boolean

boolean type has 2 values: true, false

Operators && || !

boolean xyz = true ;
boolean found ;

If (xyz) System.out.println(“the variable is true”);

If (xyz && found) …………….

9

char

char is used for single characters

Usual operators < <= == != > >=

char a, b, c;
a = ‘*’;
b = ‘q’;
c = ‘1’;

If (a == b) ……………

10

String

Literals enclosed in double quotes

“this is a line of text”
“any character such as $ % * . < etc can be included”

Variables
Declared as a String type
e.g.

String firstName, lastName, address;

firstName = “Jones”;

firstName.length() ; // see next page

11

String

Memory for Strings is handled differently from primitive data types

12

Primitive
type

Object

String

Many useful methods for handling String data

13

System.out.println(…)

Used to display a line of output on the Terminal Window

What is output for:

14

public static void main (){
System.out.println("123");
System.out.println("456");
System.out.println("789");
System.out.println("0");

}

System.out.println(…)

Used to display a line of output on the Terminal Window

What is output for:

15

public static void main (){
System.out.println("123");
System.out.println("456");
System.out.println("789");
System.out.println("0");

}

System.out.print(…)

Used to continue a line displayed on the Terminal Window

What is the output for:

public static void main (){

System.out.print("123");

System.out.print("456");

System.out.print("789");

System.out.print("0");

}

16

System.out.print(…)

Used to continue a line displayed on the Terminal Window

What is the output for:

public static void main (){

System.out.print("123");

System.out.print("456");

System.out.print("789");

System.out.print("0");

}

17

System.out….(…)

What is the output for:

public static void main (){

System.out.println("start of display");

System.out.print("123");

System.out.println("456");

System.out.print("789");

System.out.println("0");

System.out.println("end of display");

}

18

System.out….(…)

What is the output for:

public static void main (){

System.out.println("start of display");

System.out.print("123");

System.out.println("456");

System.out.print("789");

System.out.println("0");

System.out.println("end of display");

}

19

Sometimes Important for
labs and assignments
- But not for a test/exam

Expressions

Priorities (and so order of evaluation) can be overridden with a
subexpression … operations enclosed in parentheses

A sub-expression is always evaluated before the expression in
which it is contained is evaluated. Of course the sub-expression
is evaluated according to the rules of expressions.

Suppose c=2.0;
As if:
((9.0 / 5.0) * c) + 32.0

1.8

3.6

35.6

If there is more than one operator at the
same priority the evaluation goes from
left to right.

20

4
5

Expressions

Suppose c=2.0;
Consider the following, coded with sub-expressions:
(9.0 / (5.0 * (c + 32.0)))

34.0

170.0

0.0529

21

Mixed Mode Expressions

A mixed-mode expression is an expression that involves ints and doubles

Example: 9 / 5.0 * 2 + 32

If an operation involves two operands where one is an int and the other is
a double, then the int is converted automatically to its double
equivalent before the operation occurs.

9 / 5.0 * 2 + 32
1. The first operation is “/” … the 9 is converted to 9.0 and we have

9.0/5.0 * 2 + 32
And so we have
1.8 * 2 + 32

2. “*” is performed next … the 2 is converted to 2.0
1.8 * 2.0 + 32
And so we have
3.6 + 32

3. 32 becomes 32.0 and we have the final result of 35.6

22

Mixed Mode Expressions

Example: 9 / 5 * 2 + 32.0

9 / 5 * 2 + 32.0
1. The first operation is “/” … 9/5 is 1

And so we have
1 * 2 + 32.0

2. “*” is performed next
And so we have
2 + 32.0

3. 2 becomes 2.0 and we have the final result of 34.0

23

This loss of precision can have
drastic affect on results

