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Literals, Variables, Data types

• Constants in Java are called literals. 

• 123 

• 123.45

• ’a’ 

• ‘&’

• "Gosling“

• “this is a line”

• true

• false

Int
double

char

String

boolean

Later on we’ll see another way to define constants…..



Literals, Variables, Data types

Variables

• Named location in memory

• Program controls its contents: 

• Initialize, change, display, access

• Java is strongly typed

• You must declare the type of each variable … cannot 
change this later
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Literals, Variables, Data types

Data types: 8 primitive types

Need to know int, double, char, boolean

Numeric

int 100 234 0

long 100L      234L     0L

float 100.12f      234.0f     0.0f

double 100.12      234.0     0.0

char ‘a’, ‘b’, …  ‘A’, ’B’,… ‘0’, ‘1’, ‘2’, …   ‘~’, ‘@’, ‘#’, …

boolean true, false

int and double are default 
types for numeric literals
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Integer numeric types vary according to 
the amount of memory

smallest/largest values
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Literals, Variables, Data types

Integer numeric types vary according to 
Operators for arithmetic expressions

Addition

Subtraction

Multiplication

Division

Modulo 

Sample program : IntegerArithmetic.java
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Modulo
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Decimal numeric types vary according to 
the amount of memory

smallest/largest values
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Literals, Variables, Data types

Decimal - operators for arithmetic expressions
Addition

Subtraction

Multiplication

Division

Sample program : FuelConsumption.java
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10.0 / 4.0
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Decimal – values are often approximations

Sample program : Approximations.java

8



boolean

boolean type has 2 values: true, false

Operators  &&  ||    !

boolean xyz = true ;
boolean found ;

If (xyz) System.out.println(“the variable is true”);

If (xyz && found ) …………….
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char

char is used for single characters

Usual operators  <     <=    ==    !=      >     >=

char a, b, c;
a = ‘*’;
b = ‘q’;
c = ‘1’;

If (a == b) ……………
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String

Literals enclosed in double quotes

“this is a line of text”
“any character such as $ % * . < etc can be included”

Variables
Declared as a String type
e.g. 

String firstName, lastName, address;

firstName = “Jones”;

firstName.length() ;               // see next page
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String

Memory for Strings is handled differently from primitive data types
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Primitive 
type

Object 



String

Many useful methods for handling String data
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System.out.println(…)

Used to display a line of output on the Terminal Window

What is output for:
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public static void main (){
System.out.println("123");
System.out.println("456");
System.out.println("789");
System.out.println("0");

}



System.out.println(…)

Used to display a line of output on the Terminal Window

What is output for:
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public static void main (){
System.out.println("123");
System.out.println("456");
System.out.println("789");
System.out.println("0");

}



System.out.print(…)

Used to continue a line displayed on the Terminal Window

What is the output for:

public static void main (){

System.out.print("123");

System.out.print("456");

System.out.print("789");

System.out.print("0");

}
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System.out.print(…)

Used to continue a line displayed on the Terminal Window

What is the output for:

public static void main (){

System.out.print("123");

System.out.print("456");

System.out.print("789");

System.out.print("0");

}

17



System.out….(…)

What is the output for:

public static void main (){

System.out.println("start of display");

System.out.print("123");

System.out.println("456");

System.out.print("789");

System.out.println("0");

System.out.println("end of display");

}
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System.out….(…)

What is the output for:

public static void main (){

System.out.println("start of display");

System.out.print("123");

System.out.println("456");

System.out.print("789");

System.out.println("0");

System.out.println("end of display");

}
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Sometimes Important for 
labs and assignments
- But not for a test/exam



Expressions

Priorities (and so order of evaluation) can be overridden with a 
subexpression … operations enclosed in parentheses

A sub-expression is always evaluated before the expression in 
which it is contained is evaluated. Of course the sub-expression 
is evaluated according to the rules of expressions.

Suppose c=2.0;
As if:
( ( 9.0 / 5.0 ) * c ) + 32.0

1.8

3.6

35.6

If there is more than one operator at the 
same priority the evaluation goes from 
left to right.
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Expressions

Suppose c=2.0;
Consider the following, coded with sub-expressions:
(9.0 /  (5.0  * ( c  + 32.0 ) ) )

34.0

170.0

0.0529
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Mixed Mode Expressions

A mixed-mode expression is an expression that involves ints and doubles

Example:  9 /  5.0  *  2  + 32

If an operation involves two operands where one is an int and the other is 
a double, then the int is converted automatically to its double 
equivalent before the operation occurs. 

9 /  5.0  *  2  + 32
1.   The first operation is “/” …  the 9 is converted to 9.0 and we have 

9.0/5.0 * 2 + 32
And so we have
1.8 * 2 + 32

2.   “*” is performed next … the 2 is converted to 2.0
1.8 * 2.0 + 32
And so we have 
3.6 + 32

3.   32 becomes 32.0 and we have the final result of 35.6
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Mixed Mode Expressions

Example:  9 /  5  *  2  + 32.0

9 /  5  *  2  + 32.0
1. The first operation is “/”  …  9/5 is 1

And so we have
1 * 2 + 32.0

2. “*” is performed next 
And so we have 
2 + 32.0

3. 2 becomes 2.0 and we have the final result of 34.0
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This loss of precision can have 
drastic affect on results


