
Ch 7 Designing Java Classes

ACS-1903 1

We have used a number of Java classes: Scanner, String,
Random, Math, Character ….

Now we consider defining our own classes

A couple of quick examples:
– PlayingCard
– Word

Example a PlayingCard class

ACS-1903 2

public class PlayingCard {
private String suit;
private String face;

public PlayingCard(String s, String f){
suit = s;
face = f;

}

public String toString(){
return face+” of “+ suit;

}
}

public class UsePlayingCards {
public static void main(String[] args) {

PlayingCard p1 = new PlayingCard(…);
System.out.println(p1); }

}

Fields/data describing a card

Constructing/initializing a card

How a card is displayed

Example a Word class

ACS-1903 3

public class Word {
private String text;
private int frequency;

public Word(String w){
text = w;
frequency = 1;

}
public String toString(){

return text;
}

}
public class ProcessWords {

public static void main(String[] args) {

Word w = new Word("Java");
System.out.println(w); }

}

Fields/data describing a word

Constructing/initializing a word

How a word is displayed

Class structure

ACS-1903 4

Classes comprise fields and methods

Fields:
Things that describe the class

or describe instances (i.e. objects)
e.g. student number, first name, last name, gender, …

Methods:
constructors, getters, setters, other…
e.g. getFirstName(), setFirstName(), equals()

a getter/accessor a setter/mutator

UML Diagram of a Class

ACS-1903 5

Class name

fields

methods (including constructors)

A class has a name,

Fields
(called variables in
Java code)

Methods
(A method may have
local fields)

e.g. Math & Random classes

ACS-1903 6

Math

+E
+PI

-Math()
+abs(double a)
+abs(float a)
+ abs(int a)
…
+ max(double a, double b)
+ max(int a, int b)
…

Random

-seed
-multiplier

+Random()
+Random(long seed)
+nextBoolean()
+nextInt()
…

A quick look at two classes we have used: Math and Random

Math provides some useful utility methods.
We use it without instantiating an object.
double area = Math.PI * Math.pow(r,2);

Random lets us use random sequences.
To utilize this we must instantiate objects.
Random die = new Random();

int toss = die.next(6)+1;

e.g. Math class

ACS-1903 7

Math has two static fields

Math has a private constructor
You cannot instantiate a Math object

Math has many static methods

Math

+E
+PI

-Math()
+abs(double a)
+abs(float a)
+ abs(int a)
…
+ max(double a, double b)
+ max(int a, int b)
…To use π you write

Math.PI

To use the static method max you write
Math.max(n1, n2)

Here we specify the name of the class

e.g. Random class

ACS-1903 8

We must instantiate an object to get a random sequence
Random gen = new Random ();

Random has some private instance fields

seed

multiplier = 0x5DEECE66DL

constructors

instance methods
gen.nextBoolean()

gen.nextInt()

Random

-seed
-multiplier

+Random()
+Random(long seed)
+nextBoolean()
+nextInt()
…

Where gen is an object
… an instance

Fields

ACS-1903 9

Fields may be primitive variables

Or, they may be of some other type

e.g. String, PlayingCard, Word

May be public or private

public – anyone can use it

private – limited access

Methods

ACS-1903 10

•Methods are either:

– value-returning

must have a return statement

e.g. getters  naming convention is …

– void

no return statement

e.g. setters  naming convention is …

Methods

ACS-1903 11

•public vs private

public - anyone can use it

private - special cases

Math constructor is private – you cannot instantiate
a Math object … try to do it

Methods

ACS-1903 12

•All classes should have

equals(…)

toString()

equals Method

ACS-1903 13

equals(…)
– Value-returning

– Returns a boolean

– Usually an equals method is designed for a class. Designer must
determine the condition when two objects are considered
equal.

– E.g. String class has an equals method

string1.equals(string2)

“abc”.equals(“xyz”) returns false

“abc”.equals(“abc”) returns true

toString Method

ACS-1903 14

toString()
– Value-returning

– Returns a string

– A method automatically called when an object is displayed
E.g. System.out.println(myObject);

– The designer of a class determines what it returns

– E.g. ArrayList has a toString() method … result is of the form:
[object1, object2, … objectn]

Text Example - Student

ACS-1903 15

Consider the student class in the text 

Class Diagram for Student

ACS-1903 16

show 1, 2, or 3
compartments/ info
as needed

+ means there is
public access to the
method

- means there is no

public access to the
field or method

-id
-firstName
-lastName
-gender
-active

getters

setters

Java code for Student - fields

ACS-1903 17

instance vs class

e.g. consider Student class

Which fields are class?

Which fields are instance?

Java code for Student - fields

ACS-1903 18

instance vs class

Instance ≡ an object

Static field ≡ class-level field

Regardless of the number of students
there is only one lastId field.

It is a class-level field that is shared

by all Student instances

There are id, firstName,
lastName, gender, active, and
major fields for each Student instance .
So each student can have different values.

Java code for Student - fields

ACS-1903 19

private vs public

private:

only directly accessible from within the class/object,

and from outside the class via getters/setters

public : accessible from anywhere

A design principle is to make fields private

but give public access to the getters and setters (a later slide)

Java code for Student - constructors

ACS-1903 20

The no-arg constructor

Constructor with 4 parameters
-a 4-arg constructor

Use as many constructors as your application requires.
Constructors differ in the number and type of parameters.

Java code for Student - getters

ACS-1903 21

Notice
Getters (also called accessors) for most private fields

Naming convention:
Start with “get” followed by the
field name but this starts with a
capital letter

Naming convention for boolean:
Start with “is” followed by the
field name but this starts with a
capital letter

Java code for Student - setters

ACS-1903 22

Notice
Setters (also called mutators) for most private fields

Naming convention:
Start with “set” followed by the
field name but this starts with a
capital letter

Java code for Student – other methods

ACS-1903 23

private method nextId
Used to control the id assigned
to a new student object

toString
Executes when a student is printed

equals
Tests two student objects to see
if they are ‘equal’

Java Classes

ACS-1903 24

Class is a template for objects

How are these shown in UML?
UML=unified modeling language

Objects

ACS-1903 25

Objects:

instantiated/created via new – lots of examples

also called an instance – so we can speak of instance
fields/methods

How are these shown in UML?

underlined

object name
followed by “:”
followed by
class name

field values

Objects

ACS-1903 26

Listing 7.1:

Creates two students

One using the no-arg constructors and setters

The other using a 4-arg constructor

Objects

ACS-1903 27

/**

* Create two student objects

* using the two constructors

*/

public class UseConstructors

{

public static void main (String[] args){

// first, with the no-arg constructor

Student jill = new Student();

// use setters to complete the student object

jill.setFirstName("Jill");

jill.setLastName("Lee");

jill.setGender('F');

jill.setActive(true);

// now with the other constructor

Student sam = new Student("Samantha","Jones",'F',true);

// display the students

System.out.println(jill);

System.out.println(sam);

}

}

toString() is used automatically by JVM

