Ch 7 Designing Java Classes

We have used a number of Java classes: Scanner, String,
Random, Math, Character

Now we consider defining our own classes

A couple of quick examples:
— PlayingCard
— Word

Example a PlayingCard class

public class PlayingCard {

private String suit; } Fields/data describing a card
private String face;

public PlayingCard(String s, String f){
s Constructing/initializing a card
face =f;

}

public String toString(){ How a card is displayed
return face+” of “+ suit;

}

public class UsePlayingCards {
public static void main(String[] args) {

PlayingCard p1 = new PlayingCard(...);
System.out.printin(p1); }

Example a Word class

public class Word {

private String text; } Fields/data describing a word
private int frequency;

public Word(String w){

text = w; Constructing/initializing a word
frequency = 1;

}

public String toString(){ o

return text; How a word is displayed
}

public class ProcessWords {

public static void main(String[] args) {

Word w = new Word("Java");
System.out.printin(w); }

Class structure

Classes comprise fields and methods

Fields:
Things that describe the class
or describe instances (i.e. objects)

e.g. student number, first name, last name, gender, ...

Methods:
constructors, getters, setters, other...
e.g. &eLFirstName(),ﬂFirstName(), equals()

a getter/accessor a setter/mutator

UML Diagram of a Class

Class name } A class has a name,

fields

Fields
(called variables in
Java code)

methods (including constructors)

Methods
(A method may have
local fields)

e.g. Math & Random classes

A quick look at two classes we have used: Math and Random

Math provides some useful utility methods.

We use it without instantiating an object.
double area = Math.PI * Math.pow(r,2);

Math

+E
+P|

-Math()
+abs(double a)
+abs(float a)
+ abs(int a)

+ max(double a, double b)
+ max(int a, int b)

Random lets us use random sequences.

To utilize this we must instantiate objects.
Random die = new Random() ;
int toss = die.next (6)+1;

Random

-seed
-multiplier

+Random()
+Random(long seed)
+nextBoolean()
+nextint()

e.g. Math class

Math

Math has two static fields

—

+E
+P|

Math has a private constructor ———

You cannot instantiate a Math obje7v

Math has many static methods\

To use 1t you write

-Math()
+abs(double a)
+abs(float a)

+ abs(int a)

+ max(double a, double b)
+ max(int a, int b)

Math.PT

To use the static method max you write

Math.max (nl, n2)

Here we specify the name of the class

e.g. Random class

We must instantiate an object to get a random sequence
Random gen = new Random () ;

Random has some private instance fields

seed Rand
multiplier =0x5D dndom
~\\\\\\‘\\\\\\\\\\\\\’—seed

-multiplier

constructors +Random()

+Random(long seed)

/ +nextBoolean()

gen. nextBoolean()/v +nextint()
gen.nextInt () =

instance methods

%._J

Where gen is an object
... an instance

Fields

Fields may be primitive variables
Or, they may be of some other type
e.g. String, PlayingCard, Word

May be public or private
public —anyone can use it
private — limited access

Methods

*Methods are either:
— value-returning
must have a return statement

e.g. getters € naming convention is ...

— void
no return statement

e.g. setters € naming convention is ...

Methods

epublic vs private
public - anyone can use it
private - special cases

Math constructor is private — you cannot instantiate
a Math object ... tryto do it

Methods

*All classes should have

equals(...)

toString()

equals Method

equals(...)
— Value-returning
— Returns a boolean

— Usually an equals method is designed for a class. Designer must
determine the condition when two objects are considered
equal.

— E.g. String class has an equals method
stringl.equals (string?)

“abc”.equals (Yxyz”) returns false

“abc”.equals (Yabc”) returns true

toString Method

toString()

— Value-returning
— Returns a string

— A method automatically called when an object is displayed
E.g. System.out.println (myObject) ;

— The designer of a class determines what it returns

— E.g. Arraylist has a toString() method ... result is of the form:
[object,, object,, .. object, 1]

Text Example - Student

Consider the student class in the text =

Name of class =

Fields =

Constructors =

Methods =

getters

setters

Class Diagram for Student

Student

-id
-firstName

-lastName
-gender
-active

+Student ()

+Student (firstName, lastName, gender, active)
-nextld ()

+getld ()

+getlastld ()

+getFirstName ()
+getlastName ()
+getGender ()

+isActive ()

+getMajor ()

+setlastld (newlastld)

+ setFirstName (newFirstName)
+setlastName (newlastName)
+setGender (newGender)
+setActive (newActive)
+setMajor (newMajor)
+toString()

+equals (s)

\

ACS-1903

show 1, 2, or3
compartments/ info
as needed

+ means there is
public access to the
method

= means there is no

public access to the
field or method

16

instance vs class

Java code for Student - fields

7.11 Code listings: Student, Subject

Listing 7.6: The Student class.

e.g. consider Student class > T isdens
3 =/

Which fields are class?~ -

o

o=

=

- o 5-1 public class Student {

~~4,"'~v.:15135 STTINEE
PIi‘J;t int lastId;
J/ instantw elds

8 private int id;
. . . 9 private String firstName;
Which fields are instance? = < private String lastName;
11 private char gender;
12 private boolean active;
13 private Subject major;
14 /f first constructor, no arguments
15 public Student () {
16 id = nextId();
17 // default values for a student:
18 firstName = "unknown";
19 lastName = "unknown";
20 gender = '77;
21 active = false;
22 }
23 // second constructor, four arguments
24 public Student (String firstName, String
T o s Wl =mea ~hae Aandass haalaasan =g owra VS

ACS-1903

17

Java code for Student - fields

7.11 Code listings: Student, Subject

instance vs class

Listing 7.6: The Student class.

1 ==
2 * A student.
— . 3 */
InStance: an ObjeCt 4 public class Student {
. r- — . 5 {/ class STEDs
Static field = class-level field 6 brieans im Lastia:
7 // instantwe elds
8 private int id;
1 private String firstName;
Regardless of the number of students 10 private String lastName;
there is only one 1astId field. 1 private char gender;
12 private boolean active;
It is a class-level field that is shared 13 private Subject major;
14 /f first constructor, no arguments
by all Student instances 1 public Student (){
— 16 id = nextId();
T // default values for a student:
18 firstName = "unknown";
There are]_d_, firStName, 19 lastName = "unknown";
‘ 20 d = '7?;
lastName, gender, active, and setive - falee:
major fields for each Studentinstance. 2 }
. 23 // second constructor, four arguments
So each student can have different values. 24 public Student (String firstName, String
T o s Wl =mea ~hae Aandass haalaasan =g oara VT

ACS-1903 18

Java code for Student - fields

private vs public 10

private:
only directly accessible from within the class/object,
and from outside the class via getters/setters

public : accessible from anywhere

A design principle is to make fields private

but give public access to the getters and setters (a later slide)

Java code for Student - constructors

15 public Student () {

16 id = nextId(); The no-arg constructor

T // default values for a student:

18 firstName = "unknown";

19 lastName = "unknown";

20 gender = '77;

21 active = false;

22 }

23 // second constructor, four arguments

24 public Student (String firstName, String Constructor Wlth 4 parameters
lastName , char gender, boolean active)d

25 id = nextId(); -d 4-arg constructor

26 [/

T // when parameters and fields have the =same

28 // name they are distinquished this way:

29 // a field name alone refers to the

parameter

30 /f a field name prefixed with "this."
31 // refers to an object’s fields.

32 this.firstName = firstName;

33 this.lastName = lastName;

34 this.gender = gender;

35 this.active = active;

a6 +

Use as many constructors as your application requires.
Constructors differ in the number and type of parameters.

ACS-1903 20

Java code for Student - getters

Notice

Getters (also called accessors) for most private fields

public

return fi

¥
public

String}{
rstiiame,;

String getLastName (){

return lastName;

¥
public

¥
public

char getGender () {
return gender;

boolean

isfctive () {

return active;

}

ACS-1903

Naming convention:

Start with “get” followed by the
field name but this starts with a
capital letter

Naming convention for boolean:
Start with “is” followed by the
field name but this starts with a
capital letter

21

Java code for Student - setters

Notice

Setters (also called mutators) for most private fields

Naming convention:
Start with “set” followed by the

public wvoid String newFirstName){ field name but this starts with a
firstName = TwewFiTtstName; capital letter

I

public void setLastName (String newLastName){

lastName = newlastName;

}

public void setGender (char newGender){
gender = newGender;

}

public void setActive(boolean newActive){

active = newlActive;

}

ACS-1903 22

Java code for Student — other methods

a8 private int nextId(){ .
39 // increment lastId and return the new wvalue private method neXFId)
40 // to be used for the new student. Used to control the id assigned
b , et A to a new student object
1 public String toString()q{ .
102 return id+" "+firstName+" "+lastName; tOStrIng))
103 } Executes when a student is printed
105 public boolean equals (Student s){
106 return id == s.1id; equals)
107 } Tests two student objects to see
if they are ‘equal’

ACS-1903 23

Java Classes

Class is a template for objects

How are these shown in UML?
UML=unified modeling language

Class diagram with two compartments

Student

intid

String firstName
StringlastName
char gender
booleanactive

ACS-1903

24

Objects

Objects:

instantiated/created via new — lots of examples

also called an instance — so we can speak of instance

fields/methods
How are these shown in UML?

Figure T.3: Object Diagram with 3 student objects.

object name
followed by “:”
followed by

class name

ACS-1903

jill: Student sam : Student bob: Student)
id=1 id=2 id=3
firstName="Jill" firstName="Samantha” firstName="Robert”
lastName="Lee" lastName="Jones" lastName="5mith"
gender="F gender="F gender="M"
active=true active=true activestrue

underlined

field values

25

Objects

Listing 7.1:
Creates two students
One using the no-arg constructors and setters
The other using a 4-arg constructor

Objects
/**

* Create two student objects

* using the two constructors

*/

public class UseConstructors

{

public static void main (String[] args){

// first, with the no-arg constructor
Student jill = new Student();
// use setters to complete the student object
jill.setFirstName("Jill");
jill.setLastName("Lee");
jill.setGender('F');
jill.setActive(true);
// now with the other constructor
Student sam = new Student("Samantha","Jones",'F',true);
// display the students

System.out.printin(jill); toString() is used automatically by JVM
System.out.println(sam);

