Ch 7 Designing Java Classes Part I1I

Associations

Methods

Readability of code
Reusing code
Parameters vs arguments



Associations

Classes will have relationships with other classes. When designing you must
decide whether to implement an association, and how to implement it.

Figure 7.1 Figure 7.1: A simple Class Diagram.
1 has majors B *

Subject < — Student
is majoring in
Our

A student is majoring in a subject /assumption

A student will have at most one major

The student class has a private field with getter/setter
Implementation in Student:

13 private Subject major; <€ Private f'EId

68 public Subject getMajor (){ P

69 return major; N getter

70 1

a7 public void setMajor(Subject newMajorl{

095 major = newMajor; <« Setter

a9 }

ACS-1903 2



Associations

Classes will have relationships with other classes. When designing you must
decide whether to implement an association, and how to implement it.

Figure 7.1 Figure 7.1: A _si 2 Class Diagram.
1 has majars e
Student

Subject <4 s majoring in

A subject has majors (students)
A subject may have many majors
The Subject class has an ArrayList with getter/setter & addMajor(...)

Implementation in Subject:

11 private ArraylList <Student> majors;

28 public ArrayList<Student> getMajors (J{

29 return majors;

30 1

40 public void setMajors (ArrayList <Student>
majorsl){

41 this .majors = majors;

44 public void addMajor(Student newMajorl{

45 majors.add (newMajor);

ACS-1903



Java Classes — making a connection between objects

Assocliations: Figure 7.1: A simple Class Diagram.
. 1 has majors ¥
Figure 7.1 Subject R —— Student
is majoring in

Listing 7.2: Sam declares a Math major

1
2 Sx==

3 * Create a student Sam and a subject area Math
4 + and then code the action of

5 * Sam declaring a major im Math

6 */

ConSider SamDeC|areSMathMaj0r.java 7 public class SamDeclaresMathMajor
{

el

Instantiate a SUbjeCt ... math e public static void main(String[] args){
. ——_—______—__—ﬂr_—_—__"Subject math = new
|n5tantlate a StUdent ... Sdm \ Subject ("Math" ,"Mathematics");
11 =

. Student sam = new
Set Sam’s major to be math

Student ("Samantha","Jones",'F’,true);
; : 12 [l tw t 3 for the "decl jor™
Add Sam to the list of math maJOFS\ﬁ\ two actions for the "declare major

sam.setMajor (math);

14 math.addMajor (=zam);
15 System.out.println("Math majors = "
16 +math.getMajors());

ACS-1903 4



Java Classes- reusing code

Methods are used for two purposes
1. To make a program more readable through decomposition
2. To reuse code instead of duplicating code

Consider that the code in SamDeclaresMathMajor.java could be replicated

for every student declaring a major —
jill.setMajor (math) ; For jill We can replace this
math.addMajor (jill) ; kind of code by writing

— a method that sets a

student’s major and
adds the student to a

} Forbob | subject >

sam.setMajor } For sam

(
acs.addMajor (sam) ;
bob.setMajor (

(

acs.addMajor



Java Classes- reusing code

Methods are used for two purposes
1. To make a program more readable through decomposition
2. To reuse code instead of duplicating code

Consider that the code in SamDeclaresMathMajor.java could be replicated
for every student declaring a major

12 // Each student is majoring im Math
13 declareMajors (jill, math);
14 declareMajors (sam, math); Three calls to the
15 declareMajors (bob, math); method below
16 System.out.println("Math majors = "
17 +math.getMajors () );
18 I .
19 public static veoid declareMajors(Student =,

Subject m){ ) . A method to handle
20 // student s declares a major in m — . .
21 s.setMajor (m) ; declaring a major
22 m.addMajor(s); ]
23 I

ACS-1903 6



12
13
14
15
16

-
i

18
19

20
21
22
23

Java Classes - Parameters and arguments

Arguments passed to a method

// Each student 1is
declareMajors (jill, math);

declareMajors (sam, math); Parameters deflnEd
declareMajors (bob, math); for 3 methOd

ing in Math

System.out.println("Math majors =
+math.getMajo

+
public static
Subject m){
// student s declares a major in m

eclareMajors (Student s,

s.setMajor (m) ;
m.addMajor(s);
I

Arguments are copied into the parameters on entry, but
there is no copying on return.

Arguments must match parameters by type.

ACS-1903 7



Java Classes - Parameters and arguments

Parameter Lists / Arguments

A parameter list defines the type of data that will be passed in to a
method

Arguments appear in the call statement.

Arguments are copied into the parameters on entry, but there is no
copying on return.

But for objects its possible to modify them in the called method

See ObjectModifiedByCalledMethod.java



