Relational Algebra

- Relational algebra is a procedural language ...
 operations that can be implemented by a
 database
- SQL is non-procedural
- We will consider some operators and the mapping of SQL Select to RA statements and to an RA tree.

Relational Algebra

Operators:

SELECT
PROJECT
JOIN

There are more ACS-4902

We need to consider a **SQL Select** in terms of **RA operators** select, project, and join

SELECT

- The SELECT Operation
 - Yields a relation, a <u>subset of the tuples</u> from the operand that satisfies a selection condition:

$$\sigma_{\text{selection condition}>}(R)$$

R is a relation or a variable representing a relation

- Boolean expression contains clauses of the form <attribute name> <comparison op> <constant value> or
- <attribute name> <comparison op> <attribute name>

AND, OR, and NOT

SELECT

Example:

```
\sigma_{(\mathsf{Dno}=4\;\mathsf{AND}\;\mathsf{Salary}>25000)\;\mathsf{OR}\;(\mathsf{Dno}=5\;\mathsf{AND}\;\mathsf{Salary}>30000)}(\mathsf{EMPLOYEE})
```

- <selection condition> applied independently to each individual tuple t in R
 - If condition evaluates to TRUE, tuple selected
- unary

PROJECT

- Yields a relation with specific columns (or arithmetic expressions involving columns) from the operand
 - -discards the other columns:

$$\pi_{\text{}}(R)$$

R is a relation or a variable representing a relation

- unary
- degree
 - Number of attributes in <attribute list>
- duplicate elimination
 - Result of PROJECT operation is a set of distinct tuples

Sequences of Operations

• In-line expression:

$$\pi_{\mathsf{Fname,\ Lname,\ Salary}}(\sigma_{\mathsf{Dno}=5}(\mathsf{EMPLOYEE}))$$

Sequence of operations:

```
\begin{aligned} & \text{DEP5\_EMPS} \leftarrow \sigma_{\text{Dno}=5}(\text{EMPLOYEE}) \\ & \text{RESULT} \leftarrow \pi_{\text{Fname, Lname, Salary}}(\text{DEP5\_EMPS}) \end{aligned}
```

Same result

The CARTESIAN PRODUCT

CARTESIAN PRODUCT

- CROSS PRODUCT or CROSS JOIN
- Denoted by imes
- Binary set operation
- Useful when followed by a selection that matches values of attributes

A Product can yield attributes of the same name ... the dot notation to disambiguate

JOIN

- The **JOIN** Operation
 - Denoted by
 - Combine related tuples from two relations
 - Inner join
 - binary

Join condition

```
DEPT_MGR \leftarrow DEPARTMENT \bowtie Mgr_ssn EMPLOYEE RESULT \leftarrow \pi_{\text{Dname, Lname, Fname}}(\text{DEPT\_MGR})
```

Theta JOIN

Natural join *

THETA JOIN

- Each <condition> of the form $A_i \theta B_i$
- $-A_i$ is an attribute of R
- $-B_j$ is an attribute of S
- $-A_i$ and B_j have the same domain
- $-\theta$ (theta) is one of the comparison operators:

OUTER JOIN SYMBOLS

LEFT

RIGHT

FULL

Notation for Query Trees

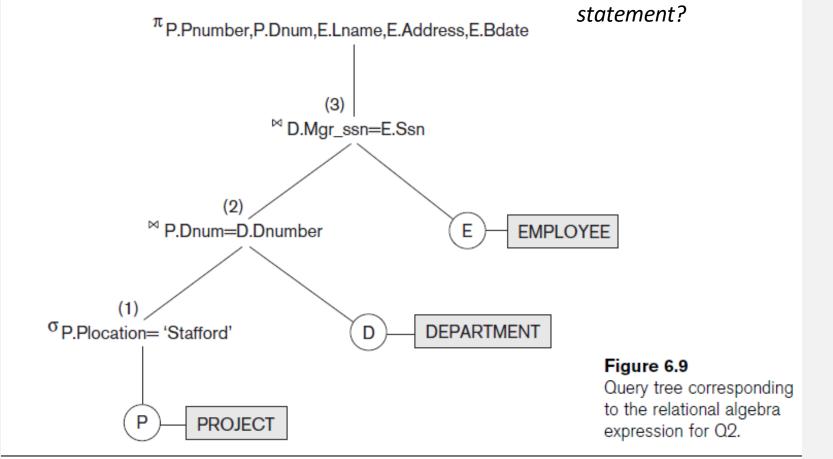
Query tree for RA operations

- Represents the input relations of a query as leaf nodes of the tree
- Represents the relational algebra operations as internal nodes
- Execution is bottom-up; results move up the tree as an input/operand

Query 2. For every project located in 'Stafford', list the project number, the controlling department number, and the department manager's last name, address, and birth date.

SELECT Pnumber, Dnum, Lname, Address, Bdate **Q2**: FROM PROJECT, DEPARTMENT, EMPLOYEE WHERE Dnum=Dnumber AND Mgr ssn=Ssn AND Plocation = 'Stafford'; Data Output Explain Messages History address pnumber dnum bdate Iname integer character varying character varying date integer 30 Wallace 291 Berry, Bellaire... 1941-06-20 291 Berry, Bellaire... 1941-06-20 10 Wallace

Q2: SELECT Pnumber, Dnum, Lname, Address, Bdate **FROM** PROJECT, DEPARTMENT, EMPLOYEE


WHERE Dnum=Dnumber

AND Mgr_ssn=Ssn

AND

Plocation='Stafford';

Given the Selects statement, what is the RA query tree?
Given the RA query tree, what is the Select

From **December 2015 exam**:

```
Consider the XXX database.
Consider the SQL statement:
select city
from Offices
where state = "CA";
```

Translate the SQL statement into a sequence of relational algebra statements.

From **December 2015 exam**:

```
Consider the SQL statement:
select city, amount
from customers
inner join orders
on (customers.customerNumber = orders.customerNumber)
inner join payments
on (customers.customerNumber = payments.customerNumber)
where city = "NYC"
and status = "shipped"
;
```

Illustrate a relational algebra query tree for the execution of the statement.

Example and next 3 slides

Example: Consider this query that retrieves from the text's Company database the SSN and last name of employees who earn more than 10000 and have a daughter and a son

SELECT ssn, Iname

FROM dependent x

INNER JOIN employee e

ON (x.essn = e.ssn)

INNER JOIN dependent y

ON (y.essn = e.ssn)

where x.relationship = 'Son' and y.relationship = 'Daughter' and e.salary > 10000

Create a query tree for the above

Example

First: how do we apply our study of relational algebra to this?

```
SELECT ssn, Iname a projection
```

```
FROM dependent x
INNER JOIN employee e
ON (x.essn = e.ssn)
INNER JOIN dependent y
ON (y.essn = e.ssn)
inner join between x and e
inner join between y and e
```

where x.relationship = 'Son' a selection on x and y.relationship = 'Daughter' a selection on y and e.salary > 10000 a selection on e

Example

First: how do we apply our study of relational algebra to this?

```
SELECT ssn, Iname a projection
```

```
FROM dependent x
INNER JOIN employee e
ON (x.essn = e.ssn)
INNER JOIN dependent y
ON (y.essn = e.ssn)
inner join between x and e
inner join between y and e
```

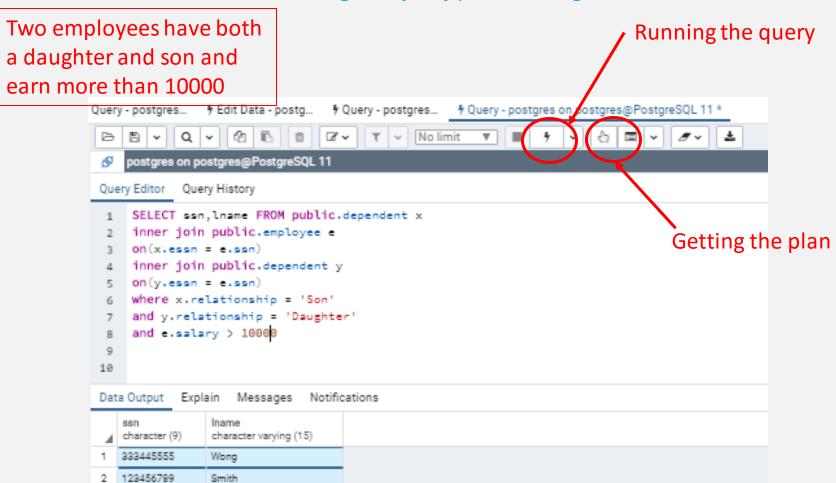
where x.relationship = 'Son' a selection on x and y.relationship = 'Daughter' a selection on y and e.salary > 10000 a selection on e

Our approach:

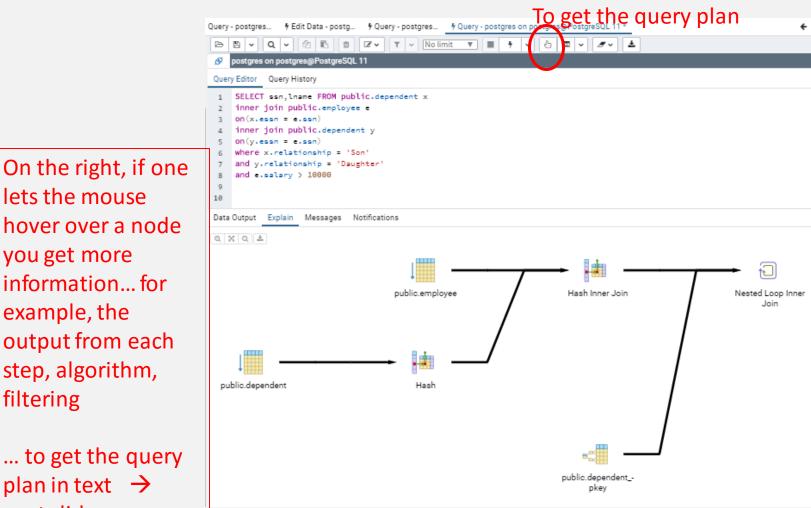
We need to create the query tree with the appropriate joins, selections, and projections, and then push operations downwards as far as possible

Example

a projection
inner join between x and e
inner join between y and e
a selection on x
a selection on y
a selection on e

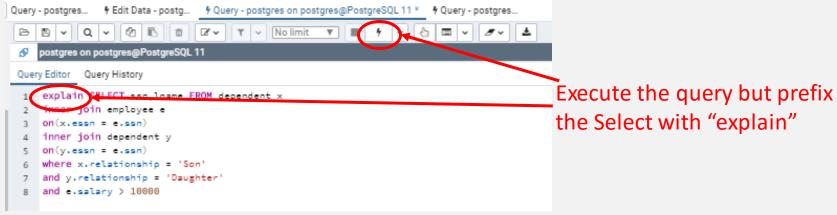

Query trees

In class:


Create the diagram, then check that operations are as low as possible in tree.

Remaining slides are for interest only

Aside: Seeing the query plan in PostgreSQL

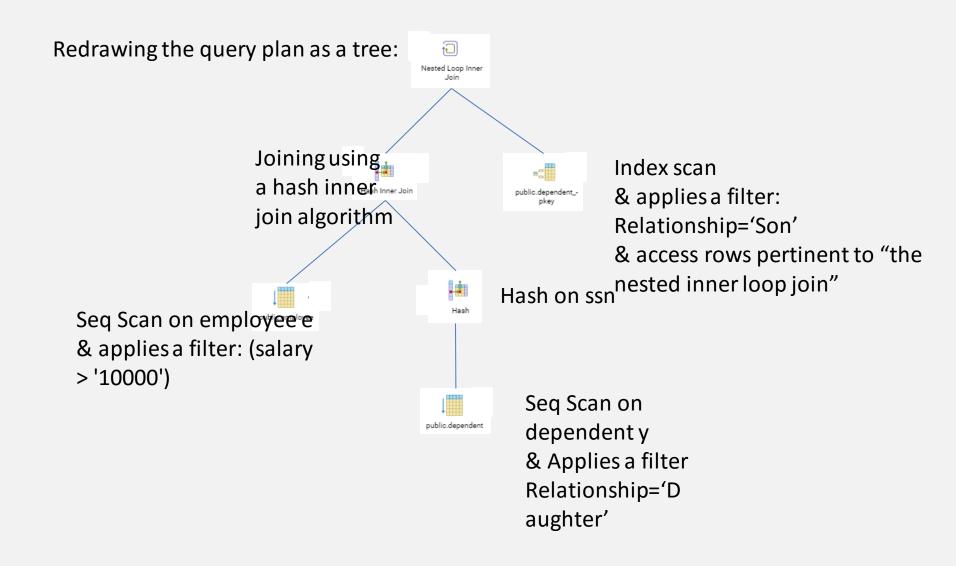

ASIDE: query plans in PostgreSQL

lets the mouse hover over a node you get more information... for example, the output from each step, algorithm, filtering

plan in text \rightarrow next slide

ASIDE: query plans in PostgreSQL

Query plan in **text** form – note that it shows join algorithms and filters

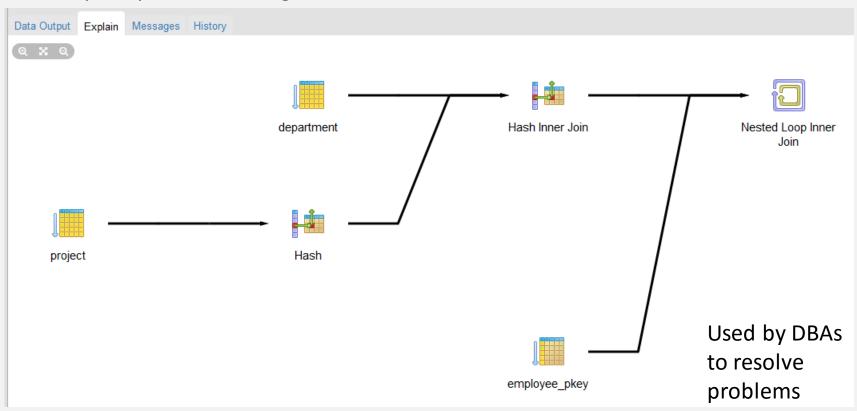

```
Nested Loop (cost=16.42..30.50 rows=1 width=88)
```

- -> Hash Join (cost=16.27..29.72 rows=1 width=128)
 - Hash Cond: (e.ssn = y.essn)
 - -> Seq Scan on employee e (cost=0.00..13.13 rows=83 width=88) Filter: (salary > '10000'::numeric)
 - -> Hash (cost=16.25..16.25 rows=2 width=40)
 - -> Seq Scan on dependent y (cost=0.00..16.25 rows=2 width=40)
 Filter: ((relationship)::text = 'Daughter'::text)
- -> Index Scan using dependent_pkey on dependent x (cost=0.15..0.77 rows=1 width=40)

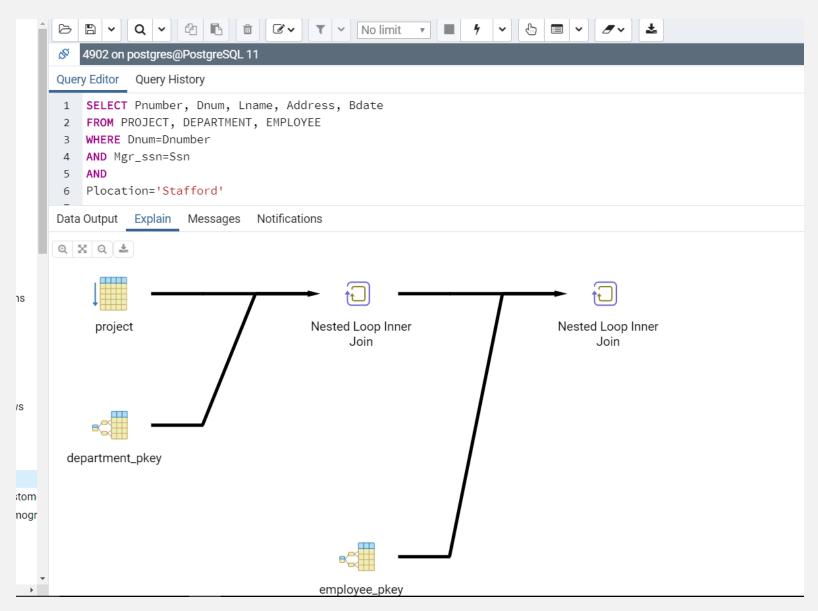
Index Cond: (essn = e.ssn)

Filter: ((relationship)::text = 'Son'::text)

ASIDE: query plans in PostgreSQL → similar to a query tree


Aside: Query plans in real database systems are trees where nodes are operations the database system Implements

Some examples →


https://www.postgresql.org/docs/current/static/using-explain.html

Query 2. For every project located in 'Stafford', list the project number, the controlling department number, and the department manager's last name, address, and birth date.

An actual explain plan from PostgreSQL

Query 2. (again...rerun today)

From https://www.simple-talk.com/sql/performance/execution-plan-basics/

For interest only

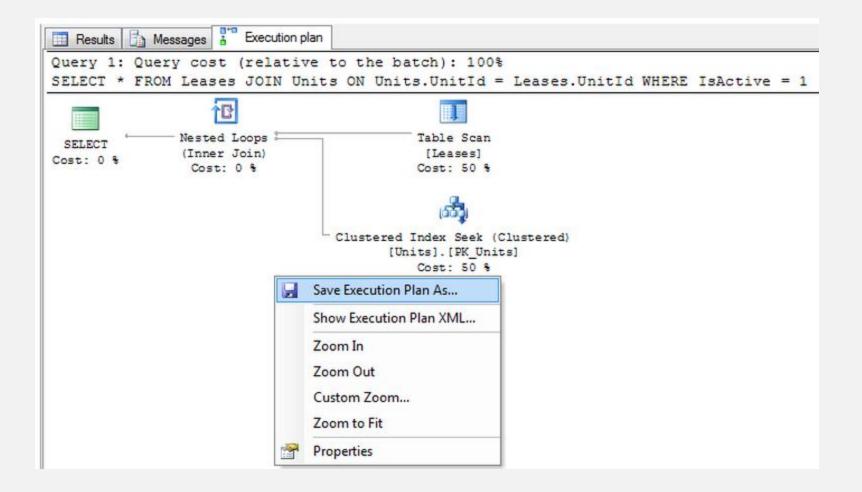
```
SELECT *
FROM [dbo].[DatabaseLog];
```

I tend to click the icon more often than not but, either way, we see our very first Estimated execution plan, as in Figure 1.

Messages Execution plan

Query 1: Query cost (relative to the batch): 100%

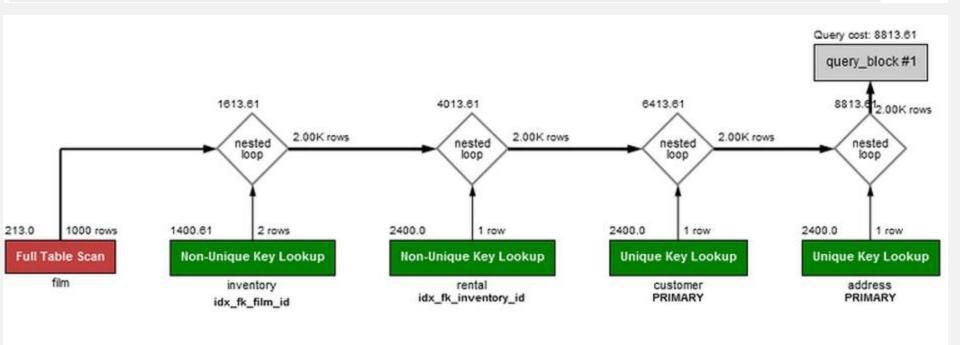
SELECT * FROM [dbo].[DatabaseLog]


Table Scan

[AdventureWorks].[dbo].[Data...

Cost: 100 %

From http://stackoverflow.com/questions/7359702/how-do-i-obtain-a-query-execution-plan


For interest only

From https://dev.mysql.com/doc/workbench/en/wb-performance-explain.html

For interest only

```
SELECT CONCAT(customer.last_name, ', ', customer.first_name) AS customer, address.phone, film.title
FROM rental
INNER JOIN customer ON rental.customer_id = customer.customer_id
INNER JOIN address ON customer.address_id = address.address_id
INNER JOIN inventory ON rental.inventory_id = inventory.inventory_id
INNER JOIN film ON inventory.film_id = film.film_id
WHERE rental.return_date IS NULL
AND rental_date + INTERVAL film.rental_duration DAY < CURRENT_DATE()
LIMIT 5;
```

