Structured Query Language (SQL)

SQL .. Chapters 6 & 7 (7t edition)
Chapters 4 & 5 (6" edition)

ACS-3902



Structured Query Language (SQL)

SQL
*Structured Query Language
*major reason for the success of relational databases
econsidered a declarative language
*does have some procedural elements
CTE / Recursive queries in 7" edition
Stored procedures
Triggers
edefined by the American National Standards Institute
(ANSI) in 1986, and the International Organization for
Standardization (ISO) in 1987
*enhanced several times: SQL 86, SQL99, ...

ACS-3902



Structured Query Language (SQL)

SQL
*DDL: Define schemas, domains, tables, views, ...

DML: Retrieve and update data
Select
Update
Delete
Insert
*DCL: Data control language — grant access to db objects

*TCL: Transaction control language - used to manage
different transactions occurring within a database....
commit, rollback

estatements end with a semicolon — not always enforced
ACS-3902



Data Control Language - DCL

Grant ...
Revoke ...

CREATE USER "smith-j"
with PASSWORD '1234567ACS!" CREATEDB;

GRANT Select on company.* to smith-j;

ACS-3902



Data Definition Language - DDL

Create database
Create table
Create view
Create domain
Alter table

Drop ...

Expect a DBMS to have Create Index and Drop Index commands,
but those are not part of the standard now

ACS-3902



Schema

* CREATE database COMPANY;

— A named collection of tables



CREATE TABLE

e Specify a new relation
— Name the relation and specify attributes & constraints
— Relation is called a base table (as opposed to a virtual table)

CREATE TABLE table name (

column definitions/constraints
table constraints



The CREATE TABLE

column definitions/constraints

column name

datatype

Constraints
nulls allowed
not null
primary key
foreign key
unique
default
check



CREATE TABLE EMPLOYEE

( Fname VARCHAR(15) NOT NULL,
Minit CHAR,
Lname VARCHAR(15) NOT NULL,
Ssn CHAR(9) NOT NULL,
Bdate DATE,
Address VARCHAR(30),
Sex CHAR,
Salary DECIMAL(10,2),
Super_ssn CHAR(9),
Dno INT NOT NULL,

PRIMARY KEY (Ssn),

FOREIGN KEY (Super_ssn) REFERENCES EMPLOYEE(Ssn),

FOREIGN KEY (Dno) REFERENCES DEPARTMENT(Dnumber) );
CREATE TABLE DEPARTMENT

( Dname VARCHAR(15) NOT NULL,
Dnumber INT NOT NULL,
Mgr_ssn CHAR(9) NOT NULL,
Mgr_start_date DATE,

PRIMARY KEY (Dnumber),
UNIQUE (Dname),
FOREIGN KEY (Mgr_ssn) REFERENCES EMPLOYEE(Ssn) );

ACS-3902



CREATE TABLE DEPT_LOCATIONS
( Dnumber INT NOT NULL,
Dlocation VARCHAR(15) NOT NULL,
PRIMARY KEY (Dnumber, Dlocation),

FOREIGN KEY (Dnumber) REFERENCES DEPARTMENT(Dnumber) );

CREATE TABLE PROIJECT
( Pname VARCHAR(15) NOT NULL,
Pnumber INT NOT NULL,
Plocation VARCHAR(15),
Dnum INT NOT NULL,

PRIMARY KEY (Pnumber),

UNIQUE (Pname),

FOREIGN KEY (Dnum) REFERENCES DEPARTMENT(Dnumber) );
CREATE TABLE WORKS_ON

( Essn CHAR(9) NOT NULL,
Pno INT NOT NULL,
Hours DECIMAL(3,1) NOT NULL,

PRIMARY KEY (Essn, Pno),
FOREIGN KEY (Essn) REFERENCES EMPLOYEE(Ssn),
FOREIGN KEY (Pno) REFERENCES PROJECT(Pnumber) );

CREATE TABLE DEPENDENT
( Essn CHAR(9) NOT NULL,
Dependent_name VARCHAR(15) NOT NULL,
Sex CHAR,
Bdate DATE,
Relationship VARCHAR(8),

PRIMARY KEY (Essn, Dependent_name),
FOREIGN KEY (Essn) REFERENCES EMPLOYEE(Ssn) );

ACS-3902

10



CREATE TABLE DEPT_LOCATIONS

( Dnumber
Dlocation

PRIMARY KEY (Dnumber,
FOREIGN KEY (Dnumber)\REFERENCES DEPARTMENT(Dnumber) );

CREATE TABLE PROIJECT
( Pname
Pnumber
Plocation
Dnum

PRIMARY KEY (Pnumber),

UNIQUE (Pname),

FOREIGN KEY (Dnum) REFERENCES DEPARTMENT|/(Dnumber) );

CREATE TABLE WORKS_ON
( Essn
Pno
Hours

FOREIGN KEY (Essn) RERERENCES EMPLOYEE(Ssn)),
FOREIGN KEY (Pno) REF
CREATE TABLE DEPENDENT

( Essn
Dependent_name
Sex
Bdate
Relationship

PRIMARY KEY (Essn, Dependent_name),
FOREIGN KEY (Essn) REFE

ACS-3902

Data types

T
VARCHAR(15)
Dlocation),

ARCHAR(15)
INT
VARCHAR(15),
INT

Not null constraint!!

NOT NULL,
NOT NULL,

|

NOT NULL,
NOT NULL,

NOT NULL,

NOT NULL,
NOT NULL,
NOT NULL,

wumber) J;

NOT NULL,
NOT NULL,

LOYEE(Ssn) );

11



CREATE TABLE DEPT_LOCATIONS
( Dnumber INT NOT NULL,
Dlocation VARCHAR(15) NOT NULL,
> PRIMARY KEY (Dnumber, Dlocation),
FOREIGN KEY (Dnumber) REFERENCES DEPARTMENT(Dnumber) );
CREATE TABLE PROJECT

PK constraints!!

( Pname VARCHAR(15) NOT NULL,
Pnumber T NOT NULL,
Plocation RCHAR(15),

Dnum IN NOT NULL,

PRIMARY KEY (Pnumber),

UNIQUE (Pname),

FOREIGN KEY (Dnum) REFERENCES DEPARTMENT(Dnumber) );
CREATE TABLE WORKS_ON

( Essn NOT NULL,
Pno NOT NULL,
Hours NOT NULL,

PRIMARY KEY (Essn, Pno),

FOREIGN KEY (Essn) MPROYEE(Ssn),

FOREIGN KEY (Pno) R JEKT(Pnumber) );

CREATE TABLE DEPENDENT

( Essn NOT NULL,

Dependent_name NOT NULL,

Sex CHAR,
Bdate DATE,
Relationship VARCHAR(8),
PRIMARY KEY (Essn, Dependent_name),
FOREIGN KEY (Essn) REFERENCES EMPLOYEE(Ssn) );

FK constraints!!

ACS-3902 12



Attribute Data Types

No detailed knowledge of data types required for 3902
— just a working knowledge

Basic data types
— Numeric data types
* Integer numbers: INTEGER, INT, and SMALLINT

* Floating-point (real) numbers: FLOAT or REAL, and
DOUBLE PRECISION

— Character-string data types
* Fixed length: CHAR (n), CHARACTER (n)

* Varying length: VARCHAR (n), CHAR
VARYING (n), CHARACTER VARYING (n)



Attribute Data Types

— Bit-string data types

* Fixed length: BIT (n)

e Varying length: BIT VARYING (n)
— Boolean data type

* Values of TRUE or FALSE or NULL
— DATE data type

* Ten positions

e Components are YEAR, MONTH, and DAY in the form
YYYY-MM-DD



Attribute Data Types

— Timestamp data type (TIMESTAMP)
* Includes the DATE and TIME fields

* Plus a minimum of six positions for decimal fractions of
seconds
 Optional WITH TIME ZONE qualifier

— INTERVAL data type

 Specifies a relative value that can be used to increment
or decrement an absolute value of a date, time, or

timestamp



Domains

* Domain
— Name to be used with attribute specifications

— Makes it easier to change the data type for a domain that
is used by numerous attributes

— Improves schema readability

Considered really useful!!



Domains

CREATE DOMAIN birthday datetime NULLS ALLOWED

CREATE TABLE employee(
id char(5),
firstName char(30),
lastName char(40),
dateOfBirth birthday More informative



CHECK constraints

Again, onsidered really useful

e CHECK clause

» Specifies a boolean expression applied to a single row that
must evaluate to true for the row to be accepted on insert or
delete

departNo INT NOT NULL
CHECK (departNo > 0 AND departNo < 21)

https://www.postgresgl.org/docs/9.4/sql-createtable.html

_____________________________________________________________________________________________________________________

MySQL parses the check clause but does not implement it.
' https://dev.mysgl.com/doc/refman/8.0/en/create-table-check-constraints.html

_____________________________________________________________________________________________________________________



https://dev.mysql.com/doc/refman/8.0/en/create-table-check-constraints.html
https://www.postgresql.org/docs/9.4/sql-createtable.html

CHECK Constraints

e CHECK clauses atthe end of a CREATE TABLE statement
can specify more than one column in the row

CHECK (endDate >= startDate)



CHECK Constraints

 To add the constraint later:

ALTER TABLE [dbo].products Existing data is

WITH CHECK  / checked

ADD CHECK (unitsinstock>=0);



Key Constraints

e Asingle attribute can be specified as primary key or as unique

* If multiple attributes comprise a key or if a combination of
attribute values must be unique:

— PRIMARY KEY clause

» Specifies one or more attributes comprising the
primary key of a relation

— UNIQUE clause
» Specifies alternate (secondary) keys

To add the constraint later;: ALTER TABLE ..



Sequences / Surrogate keys

A sequence generator is a named object that produces new
values as newly inserted rows require. Can be used by
more than one table.

CREATE SEQUENCE name
[ INCREMENT increment_value]
[ MINVALUE minimum_value]
[ MAXVALUE maximum_value]

https://www.postgresql.org/docs/9.5/static/sql-createsequence.html

Some designers want all their keys to be surrogates

ACS-4904: Data Warehousing star schema



CREATE VIEW

Creates a virtual table giving it a name and columns defined
through a Select statement

Traditionally (in ACS-3902) these are materialized on
demand, and so they are always up-to-date.

An SQL statementreferencing a view will be rewritten by the
query processor transparently to user so that the view
definition is incorporated prior to execution.



CREATE VIEW

CREATE VIEW ProductQuantities

AS

SELECT ProductID, ProductName, UnitsinStock
FROM dbo.Products

Grant Select on ProductQuantities to ...

Can be used to limit the information a user sees.
Instead of granting access to Products, one can grant access to
ProductQuantities.

Provides a type of security by limiting what a user sees,
and what they can do.

Can be used to build an answer to a complex query. A query can
reference a view as if it’s a table, or, a view can reference another view

asif it’sa table. Later: CTE



Referential Integrity

A foreign key is a combination of attributes that must either
be null, or have a value in an associated PK

If a PK is compositethen a FK is composite

FOREIGN KEY clause

— Relates a FK attribute to a PK attribute and can specify
actions on update and delete:

SET NULL
CASCADE
SET DEFAULT



REFERENCES Clause

Example:
gender in Person is a foreign key referencing the PK id in Gender

The action clause says what happens for delete or update of a PK value

Person
id name

gender Child table

Gender
id name Parent table

The action clause specifies what should happen in a child table
if one deletes a row in the parent table

ACS-3902



REFERENCES Clause — creating the Person, Gender tables

create table gender (
id int primary key,
name varchar (25) not null unique

)2

create table person (

1d int primary key,
name varchar (25),
gender int
) ;
- Next slide

ACS-3902



REFERENCES Clause — creating the Person, Gender tables

ALTER TABLE person add constraint persongender foreign
key (gender) references gender (id)

on delete .. } Spec'ifyactionswhena
on update .. ; row is deleted/updated

in referenced table

INSERT INTO gender VALUES (1, 'FEMALE');
INSERT INTO gender VALUES (2, 'MALE');

INSERT INTO person VALUES (1, 'JOE', 1);
INSERT INTO person VALUES (2, 'TOM', 1),

ACS-3902



REFERENCES Clause

Delete from Gender where id=1;

NO ACTION
If a row of Employee has a gender id value of 1 the delete is disallowed (and is an error!)

CASCADE
If a row of Employee has a gender id value of 1 then the Employeerow is deleted too

Deletes can be propagated.

SET NULL
If a row of Employee has a gender id value of 1 the FK is set to null

SET DEFAULT
If a row of Employee has a gender id value of 1 the FK is set to its default value.

ACS-3902



REFERENCES Clause

Update Gender
set genderld=99
whereid=1;

NO ACTION
If a row of Employee has a gender id value of 1 the update is disallowed

CASCADE
If a row of Employee has a gender id value of 1 then the Employee row’s FK is updated to 99

Updates can be propagated.

SET NULL
If a row of Employee has a gender id value of 1 the FK is set to null

SET DEFAULT
If a row of Employee has a gender id value of 1 the FK is set to its default value.

ACS-3902



DML — data maniputlation language

Select
Update
Insert

Delete



SQL Select — general syntax

Select attribute and function list

From table list and join conditions

Where boolean criteria for a row to be included [
Group by attribute list \
Having boolean criteria for a group to be included
Order by attribute list;

K\/

Text goes through this in parts



SQL Select — execution

The database optimizer determines the exact nature of how
and when rows are retrieved and processed.

Conceptual execution sequence:

1.

oo

Rows are retrieved from the referenced tables (cartesian
product)

Rows that match the where criteria are retained

Rows are joined based on join criteria

Rows are grouped into non-overlapping groups
according to values of the grouping attributes

Groups that match the having criteria are retained

From the rows (or groups) left they are presented to the
user in sequence according to the order by attribute
values



Results of SAL queries when applied to the COMPANY

(a) Bdate Address (b) | Fname Lname Address

1965-01-09 | 731Fondren, Houston, TX John Smith 731 Fondren, Houston, TX

Franklin | Wong 638 Voss, Houston, TX

Ramesh | MNarayan | 975 Fire Oak, Humble, TX

Joyce English | 5631 Rice, Houston, TX

Query 0. Retrieve the birth date and address of the employee(s) whose name
is ‘John B. Smith’,

Qo: SELECT Bdate, Address
FROM EMPLOYEE
WHERE Fname="‘John" AND Minit="B" AND Lname="Smith’;

Query 1. Retrieve the name and address of all employees who work for the
‘Research’ department.

Q1: SELECT Fname, Lname, Address
FROM EMPLOYEE, DEPARTMENT
WHERE Dname="Research’ AND Dnumber=Dno;

ACS-3902



Results of SOL queries when applied to the COMPANY

(¢) | Pnumber Dnum Lname Address Bdate
10 4 Wallace | 291Berry, Bellaire, TX | 1941-06-20
30 4 Wallace | 281Berry, Bellaire, TX | 1941-06-20

Query 2. For every project located in ‘Stafford) list the project number, the
controlling department number, and the department manager’s last name,
address, and birth date.

Q2: SELECT Pnumber, Dnum, Lname, Address, Bdate
FROM PROJECT, DEPARTMENT, EMPLOYEE
WHERE Dnum=Dnumber AND Mgr_ssn=Ssn AND
Plocation="Stafford”;

ACS-3902 35



Case expressions

The case/when/then/else/end expression, which was introduced in SQL-92.

CASE WHEN n>0 CASE n WHEN 1
THEN 'positive' THEN 'one'
WHENNn <0 WHEN 2
THEN 'negative' THEN 'two'
ELSE 'zero' ELSE 'i cannot count that high'
END END

SELECT [ProductID],[ProductName],

CASE WHEN unitsinstock>100 THEN 'HIGH' ELSE 'low' END
FROM [3902northwind].[dbo].[Products]

ACS-3902



JOINS

Whenever we use a query to retrieve data from two or
more tables, the database query processor performs an
operation called a join.

Primary classification for joins
inner join
natural join
outer join: right, left, full
Cartesian product (or cross product)

Some other classifications
equi-join
non-equijoin
self-join
anti-join
ACS-3902



Inner join

Select ... from A inner join B on(...)

A row of A and a row of B are joined to form one row for the
result when they match according to the ON condition

Select *
from orders inner join customers
on (orders.customerid = customers.customerid)

Note an inner join can be specified in the where clause, but
this is not recommended.

Select *

from orders, customers

where orders.customerid = customers.customerid

ACS-3902



Inner join

Recode Q1, Q2, Q8 as inner joins

ACS-3902



Natural join

A NATURALjoin on two relations R and S has no join
condition specified and is an implicit EQUIJOIN for each pair
of attributes with same name from R and S

Select ... from Ainner join B on(...)

A row of A and a row of B are joined to form one row for the
result when they match according to the ON condition

Select orderlID, contactName
from orders natural join customers ;

ACS-3902



Natural join

Page 4 Q ‘1B’ is a natural join

ACS-3902



Left Outer join
Select ... from A left outer join B on(...)
A row of A and a row of B are joined to form one row for the result
when they match according to the ON condition.

If a row of A does not match a row of B then A is joined to a null row.

e.g. to list each employee and their dependents:

Right outer join — left to student

ACS-3902



Left Outer join
Page 4 Q 8B is a left outer join

Recode this as a right outer join

ACS-3902



Full Outer join
Select ... from A full outer join B on(...)
A row of A and a row of B are joined to form one row for the result
when they match according to the ON condition.

If a row of A does not match a row of B then A is joined to a null row.
If a row of B does not match a row of A then B is joined to a null row.

Not in MySQL
In PostgreSQL

ACS-3902



Cartesian Product / Cross Product

Select ... from A, B;

There is no join criteria and so each row of A joins to each row
of B to form one row for the result.

The number of rows in the result can be enormous.

ACS-3902



Cartesian Product / Cross Product

P 1 Q10 lists all combinations of ssn and dept name

How would we list all combinations of first and last names?

ACS-3902



Other Joins

equi-join
the ON condition uses the= operator

non-equi join
The ON condition uses any operator other than =

e.g. list each employee and anyone who earns more than
some specific employee

ACS-3902



Other Joins

self-join
A table is joined to itself.

P1 Q8 is aself join

e.g. find the employees who are older than Alicia Zelaya (of
course, without being aware Alicia was born on jan 19,
1968) . This query is also an example of a non-equi join.

e.g. list each employee and the name of their supervisor

e.g. like the above, but your list must include all employees

ACS-3902



Other Joins

anti-join
Given an ON condition for joining A and B, list the rows of A
that do not join to a row in B.

e.g. list the employees who are not supervising anyone

e.g. in the assignment 1 database list any staff member who
is not teaching any courses.

ACS-3902



Ambiguous Attribute Names

* If two attributes of the same name are specified in a SQL
statement then they must be qualified with the table name
using dot notation — makes references unambiguous

Q1A: SELECT Fname, EMPLOYEE.Name, Address

FROM EMPLOYEE, DEPARTMENT
WHERE DEPARTMENT.MName="Research’ AND
DEPARTMENT.Dnumber=EMPLOYEE.Dnumber;

Assuming Lname in Employee is replaced by Name
Dno in Employee is replaced by Dnumber



Ambiguous Attribute Names

* Consider listing each department name and its locations
— Need to look at the Department and Dept_Locations tables

— Both have an attribute Dnumber... any reference to this attribute must
be unambiguous



Aliases & Renaming

* Analias can be given for a table
e Attributes can be renamed (notin MySQL)

Select fn, In, bal

from Owners o (ono, fn, In)
inner join

Accounts a (acct, ono, bal)

on (0.ono=a.ono)
where bal > 1000 ;



Ch 4 Basic SQL

Operator Description Example
= Equal to Author = 'Alcott'
<> Not equal to (most DBMS also Dept <> 'Sales'
accept ! = instead of <>)
> Greater than Hire Date > '2012-01-31"
< Less than Bonus < 50000.00
>= Greater than or equal Dependants >= 2
= Less than or equal Rate <= 0.05
BETWEEN Between an inclusive range Cost BETWEEN 100.00 AND
500.00
LIKE Match a character pattern First Name LIKE 'Will%'
IN Equal to one of multiple possible values DeptCode IN (101, 103,
209)
ISorIS NOT |Compareto null (missing data) Address IS NOT NULL
IS NOT Is equal to value or both are nulls (missing Debt IS NOT DISTINCT FROM
DISTINCT data)
FROM
AS Used to change a field name when viewing SELECT employee AS
results 'departmentl'

ACS-3902



Ch 4 Basic SQL

From postgreSQL documentation for
Is distinct from
Is not distinct from

Truth Table

‘pset null "<<MULL>"

select a.a, b.b, a.a IS DISTINCT FROM b.b As "Is Distinct From™ FROM (VALUES {1}, (2), {MULL)) AS & (a), {VALUES (1), (2), {NULL}) as b (b}

I oo e
1

i 3 | b | Is pistinct From
i B e T
! 1 1 f

! 1 2z | t

i 1 L4MULL > » t

| 2 1]t

! 2 4 f

! 2 <<MULL=> t

| <<MULL>> 1 t

1 <<MULL> > 2 | t

i ¢ <MULL>> CMULL > > f

1

I oo e
i 3 | b | Is Mot Distinct From
i B e bt e
! 1 1 t

! 1 2 |

i 1 CMULL > > f

| 2 1| f

! 2 4 t

! 2 <<MULL=> i

| <<MULL>> 1 f

1 <<MULL> > 2 | F

i ¢ <MULL>> CMULL > > t

1

ACS-3902 54



Use of distinct

 SQL does not automatically eliminate duplicate tuples in
query results

 Usethe keyword DISTINCT in the SELECT clause causes
duplicates to be eliminated from result

Query 11. Retrieve the salary of every employee (Q11) and all distinct salary
values (Q11A).

> ALL is the default and is optional to include
Qif: SELECT < ALL galar}f
FROM EMPLOYEE:

Qi1A: SELECT <DISTIHCT)3&Iar}f
FROM EMPLOYEE:



Use of distinct

P1Q11A list all salaries with no duplicates
P2Q4A
P4Q17
P5Q 23



Set operations

— UNION, EXCEPT (difference), INTERSECT

What are:

A union B

__ in PostgreSQL
Notinl\/lySQL{ A except B

A intersect B

Queries
P2 Q 4A



Set operations

List all first names in company database

List first names of employees that are not first names of any
depenedents



Tables as Sets in SQL

* Set operations
— Union, except, intersect eliminate duplicates

— Equivalent multiset operations (no duplicate elimination)
UNION ALL, EXCEPT ALL, INTERSECT ALL)



Substring Pattern Matching

e LIKE comparisonoperator
— Used for string pattern matching

— % replaces an arbitrary number of zero or more characters
— underscore (_) replaces a single character

E.g.
P2Ql2 list all employees that live in Texas

P2Ql12A list all employees born in the 50s



IN operator

e IN can be used with alist (or with a subquery — later)

e Syntax: an attribute IN ( a comma-separated list of values )
evaluates to true if the attribute’s value exists in the comma-separated list

E.g.
P4 Q17 employees working on projects 1, 2, or 3

list all employees with first name James or Alicia



Arithmetic Operators

e Standard arithmetic operators:
— Addition (+)
— subtraction (-)
— multiplication (*)
— division (/)

E.g. list the total cost of order detail lines:

Select unitPrice*quantity*(1-discount)from [order details]



BETWEEN Operator

« P2 Q14 all employees earning between $30,000 and $40,000

* To get all employees born in 1960s

SELECT * FROM company.employee where bdate between
'1960-01-01' and '1969-12-31";

* Inclusive ... includes the endpoints



Ordering of Query Results

e Use ORDER BY clause

— Keyword DESC to see result in a descending order of
values

— Keyword ASC to specify ascending order explicitly

E.g. to list all employees 1n ascending
order by last name and where they have
the same last name 1n descending
sequence by filirst name

Select * from employee

Order by lastName ASC, firstName DESC;



Ordering of Query Results

e Use ORDER BY clause

E.g. to list employee last names 1n
ascending order by salary

Select lname from employee

Order by salary;

\ Not in select list ... but okay



Ordering of Query Results

* P2Q15
* List employees

In order by department and within department by
last name then first name

Not in select list ... but okay



Limiting the number of rows returned by a query

* Suppose we want to know who has the greatest salary.

* To do this we can order the results in descending order and
then, using TOP or LIMIT or ROWNUM depending on the SQL

dialect, we can limit the listto one row

Limitisin the SQL standard

SELECT * FROM company.employee

order by salary desc limit 1;



NULLs

Meanings of NULL
— Unknown value
— Unavailable or withheld value

— Not applicable attribute

Each individual NULL value considered to be different from
every other NULL value
SQL uses a three-valued logic:

— TRUE, FALSE, and UNKNOWN



Table 5.1

and, or, not

Logical Connectives in Three-Valued Logic

(a)

(b)

(c)

AND TRUE FALSE UNKNOWN
TRUE TRUE FALSE UNKNOWN
FALSE FALSE FALSE FALSE
UNKNOWN UNKNOWN FALSE UNKNOWN
OR TRUE FALSE UNKNOWN
TRUE TRUE TRUE TRUE
FALSE TRUE FALSE UNKNOWN
UNKNOWN TRUE UNKNOWN UNKNOWN
NOT

TRUE FALSE

FALSE TRUE

UNKNOWN UNKNOWN

ACS-3902

69



and, or, not — from PostgreSQL documentation

The usual logical operators are available:

AND
oR
NOT
SQL uses a three-valued logic system with true, false, and null, which represents "unknown",

a b a AND b o OR b
TRUE TRUE TRUE TRUE
TRUE FALSE FALSE TRUE
TRUE |NULL  NULL TRUE
FALSE FALSE FALSE  FALSE
FALSE MULL | FALSE  NULL
NULL MNULL |NULL NULL

a NOT a
TRUE FALSE
FALSE TRUE
NULL 'NULL

ACS-3902



Checking for NULLs

e SQL allows queries that check whether an attribute value is
NULL

— IS NULL orIS NOT NULL

P3 Q18 .. Employees with no supervisor

To get orders that have not shipped:
Select * from orders where shippedDateis null;

To get orders that have shipped:
Select * from orders where shippedDateis not null;



Subqueries / Nested Queries

* Nested queries
— A query can appear
— In the select clause if it returns a single value
— In the from clause as a derived table
— In the where clause with IN, EXISTS, NOT EXISTS, UNIQUE

P4 Q4A ... list projects where Smith is a manager of the
project’s department or where Smith works on the project



Correlated vs non-correlated Queries

Correlated subquery:
— Subquery references an attribute from an outer query

— Subguery must be evaluated once for each tuple in the
outer query

P3 Q16 ... list an employee who has a dependent of same name
and sex



Correlated vs non-correlated Queries

Non-correlated
Independent of outer query

Can be considered to be executed first and then its result
used in its place in the query

Example. List employees who have dependents



Subqueries / Nested Queries

Can appear in the select clause if it returns a single value
E.g. List each employee and the number of children they have

select fname, Iname, (select count(*) from dependent d
where e.ssn=d.essn)as numberOfDependents
from employee e



Subqueries / Nested Queries

Can be in the select clause if it returns a single value

For each employee list the number of others earning more money.

select fname, IName,
(select count(*) from employee e2
where el.salary < e2.salary) as NumberHigher
from employee el



Inline Views — another term for a subquery in the From clause

* In-line view
Defined in the FROM clause of an SQL query

E.g. list the number of orders from customers who are
located in the US

Select count(*)

from orders o inner join
(
Select customerID
from customers
where country=‘U.S.”
) C

on (c.customerlD = o.customerID) ;



Subqueries / Nested Queries

In the From clause

list employees working on projects in Houston

SELECT essn from works _on w
inner join
(select pnumber from project where plocation = 'Houston') as x
on Xx.pnumber = w.pno



Subqueries / Nested Queries in Where clause

e.g. list employees earning more than the average salary

Select lastname from Employee
where salary > ( select avg(salary)
from Employee

)



Subqueries / Nested Queries

* In Where clause ... the IN operator

— Evaluates to TRUE if comparison value(s) is/are one of the
elements produced by subquery



Nested Queries

Q4A: SELECT DISTINCT Pnumber

FROM PROJECT
WHERE Pnumber IN
( SELECT Pnumber
FROM PROJECT, DEPARTMENT, EMPLOYEE
WHERE Dnum=Dnumber AND
Mgr_ssn=Ssn AND Lname="Smith’ )
OR
Prnumber IN
( SELECT Pno
FROM WORKS_ON, EMPLOYEE

WHERE Essn=Ssn AND Lname="Smith’ );

ACS-3902 81



Nested Queries

e Use tuples of values in comparisons
— Place them within parentheses

SELECT essn

from works_on

where (pno, Hours) in

(select pno, hours from works_on
where essn = '123456789');



Nested Queries

e comparison operators
=, > >= < <= <>

4

ANY
SOME
ALTL
SELECT Lname, Fname
FROM EMPLOYEE
WHERE Salary > ALL  ( SELECT Salary

FROM EMPLOYEE
WHERE Dno=5 );



EXISTS and NOT EXISTS

e EXISTS

— Evaluates true if the result of a correlated nested query is
not empty

E.g. list any employee who has a dependent with the
same first name
P3 Query 16B.



The EXISTS and UNIQUE Functionsin SQL

* UNIQUE

— Evaluates TRUE if there are no duplicate tuples in the result
of some subquery

E.g. list those employees with one dependent
Select *

from employee c

Where unique (
select essn
from dependent d inner join employee o
on (0.ssn = d.essn)
where 0.ssn=c.ssn)

UNIQUE used this way is not in PostgreSQL
..coulduse .. where 1 = (select count(*) from .. as xx )



Aggregate Functions

Used to summarize information from multiple tuples into a
single-tuple summary

Grouping
— Create subgroups of tuples before summarizing

Built-in aggregate functions
— COUNT, SUM, MAX, MIN, and AVG

Functions can be used in the SELECT clause orin a HAVING
clause

If no Group By then aggregates are applied to all rows that
satisfy the where clause



Aggregate Functions

e OK:

select count(ssn) from employee;

* Not OK

select fname, count(ssn) from employee;

But could have

select fname, (select count(ssn) from employee) from employee;



Aggregate Functions

NULL values discarded when aggregate functions are applied
to a particular column

p5 Q20

Query 20. Find the sum of the salaries of all employees of the ‘Research’
department, as well as the maximum salary, the minimum salary, and the aver-
age salary in this department.

Q20: SELECT SUM (Salary), MAX (Salary), MIN (Salary), AVG (Salary)
FROM (EMPLOYEE JOIN DEPARTMENT ON Dno=Dnumber)
WHERE Dname="Research’;

ACS-3902

88



Aggregate Functions

Count(*) counts rows in a result set

Queries 21 and 22. Retrieve the total number of employees in the company
(Q21) and the number of employees in the ‘Research’ department (Q22).

Q21:  SELECT COUNT (*)
FROM EMPLOYEE;

Q22:  SELECT COUNT (%)
FROM EMPLOYEE,

Counts

/ rows

DEPARTMENT

WHERE DNO=DNUMBER AND DNAME="Research’;

ACS-3902

89



GROUP BY and HAVING Clauses

* GROUP BY clause

— Specifies grouping attributes

— Values are used to partition rows into subsets
* If NULLs existin grouping attribute

— Separate group created for all tuples with a NULL value in
grouping attribute

e HAVING clause

— Specifies a boolean condition pertinent to a group. If not
satisfied by a group then the group is eliminated from the
result set



GROUP BY and HAVING Clauses

E.g. P5 Q24
Number of employees and average salary for each department

For each employee list the number of dependents

a) For only those with depedents
b) For all employees



GROUP BY and HAVING Clauses

E.g. list employees on at least four projects

Must be single-valued
for a group
from employee inner join works_on on (ssn=essn)

Select ssn, fname, count(*)

group by ssn, fname

having count(*) >=4 } The criteria a group must satisfy to
be included in the result set



