

THE UNIVERSITY OF WINNIPEG

ACS-3911-050 Computer Network

Chapter 1 Lecture Note 1

A note on the use of these PowerPoint slides:

We're making these slides freely available to all (faculty, students, readers). They're in PowerPoint form so you see the animations; and can add, modify, and delete slides (including this one) and slide content to suit your needs. They obviously represent a lot of work on our part. In return for use, we only ask the following:

- If you use these slides (e.g., in a class) that you mention their source (after all, we'd like people to use our book!)
- If you post any slides on a www site, that you note that they are adapted from (or perhaps identical to) our slides, and note our copyright of this material.

Thanks and enjoy! JFK/KWR

All material copyright 1996-2016 J.F Kurose and K.W. Ross, All Rights Reserved

our goal:

- get "feel" and terminology
- more depth, detail *later* in course
- approach:
 - use Internet as example

overview:

- what's the Internet?
- what's a protocol?
- network edge; hosts, access net, physical media
- network core: packet/circuit switching, Internet structure
- performance: loss, delay, throughput
- security
- protocol layers, service models
- history

Roadmap

- 1.1 what *is* the Internet?
- **1.2 network edge**
 - end systems, access networks, links
- 1.3 network core
 - packet switching, circuit switching, network structure
- **1.4 delay, loss, throughput in networks**
- **1.5 protocol layers, service models**
- 1.6 networks under attack: security
- 1.7 history

1.1 what *is* the Internet?

- 1.2 network edge
 - end systems, access networks, links
- 1.3 network core
 - packet switching, circuit switching, network structure
- 1.4 delay, loss, throughput in networks
- 1.5 protocol layers, service models
- 1.6 networks under attack: security
- 1.7 history

What is the internet?

"Fun" Internet-Connected Device

Web-enabled toaster + weather forecaster

Internet phones

Tweet-a-watt: monitor energy use

There are two (2) Views of the Internet:

"Nuts and Bolts" View

And

"Service" View

"Nuts and Bolts" View

- Internet: "network of networks"
 - Interconnected ISPs
- *protocols* control sending, receiving of messages
 - e.g., TCP, IP, HTTP, Skype, 802.11
- Internet standards
 - RFC: Request for comments
 - IETF: Internet Engineering Task Force

"Service" View

- Infrastructure that provides services to applications:
 - Web, VoIP, email, games, ecommerce, social nets, ...
- provides programming interface to apps
 - hooks that allow sending and receiving app programs to "connect" to Internet
 - provides service options, analogous to postal service

human protocols:

- * "what's the time?"
- "I have a question"
- introductions
- ... specific messages sent ... specific actions taken when messages received, or other events

network protocols:

- machines rather than humans
- all communication activity in Internet governed by protocols

protocols define format, order of messages sent and received among network entities, and actions taken on message transmission, receipt

A human protocol and a computer network protocol:

1.1 what *is* the Internet?

1.2 network edge

- end systems, access networks, links
- 1.3 network core
 - packet switching, circuit switching, network structure
- 1.4 delay, loss, throughput in networks
- 1.5 protocol layers, service models
- 1.6 networks under attack: security

1.7 history

Network Structure

- network edge:
 - hosts: clients and servers
 - servers often in data centers
- access networks, physical media:
 - wired, wireless communication links
- network core:
 - Interconnected routers
 - network of networks

How to connect end systems to edge router?

- residential access nets
- institutional access networks (school, company)
- mobile access networks

keep in mind:

- bandwidth (bits per second) of access network?
- shared or dedicated?

Access Net: Digital Subscriber Line (DSL)

- use *existing* telephone line to central office DSLAM
 - data over DSL phone line goes to Internet
 - voice over DSL phone line goes to telephone net
- < < 2.5 Mbps upstream transmission rate (typically < 1 Mbps)</p>
- < 24 Mbps downstream transmission rate (typically < 10 Mbps)</p>

Access Net: Cable Network

frequency division multiplexing: different channels transmitted in different frequency bands

Access Net: Cable Network

- HFC: hybrid fiber coax
 - asymmetric: up to 30Mbps downstream transmission rate, 2 Mbps upstream transmission rate
- network of cable, fiber attaches homes to ISP router
 - homes share access network to cable headend
 - unlike DSL, which has dedicated access to central office

Access Net: Home Network

- typically used in companies, universities, etc.
- 10 Mbps, 100Mbps, 1Gbps, 10Gbps transmission rates
- today, end systems typically connect into Ethernet switch

- shared wireless access network connects end system to router
 - via base station aka "Access Point" or AP

wireless LANs:

- within building (100 ft)
- 802.11b/g/n (WiFi): 11, 54, 450 Mbps transmission rate

to Internet

wide-area wireless access

- provided by telco (cellular) operator, 10' s km
- between I and I0 Mbps
- 3G, 4G: LTE

Host: sends packets of data

host sending function:

- takes application message
- breaks into smaller chunks, known as *packets*, of length *L* bits
- transmits packet into access network at *transmission rate R*
 - link transmission rate, aka link capacity, aka link bandwidth

Physical Media

- bit: propagates between transmitter/receiver pairs
- physical link: what lies between transmitter & receiver
- guided media:
 - signals propagate in solid media: copper, fiber, coax
- unguided media:
 - signals propagate freely, e.g., radio

twisted pair (TP)

- two insulated copper wires
 - Category 5: 100 Mbps, 1 Gbps Ethernet
 - Category 6: 10Gbps

coaxial cable:

- two concentric copper conductors
- bidirectional
- broadband:
 - multiple channels on cable
 - HFC

fiber optic cable:

- glass fiber carrying light pulses, each pulse a bit
- high-speed operation:
 - high-speed point-to-point transmission (e.g., 10' s-100' s Gpbs transmission rate)
- Iow error rate:
 - repeaters spaced far apart
 - immune to electromagnetic noise

Physical Media: Radio

- signal carried in electromagnetic spectrum
- no physical "wire"
- bidirectional
- propagation environment effects:
 - reflection
 - obstruction by objects
 - interference

radio link types:

- terrestrial microwave
 - e.g. up to 45 Mbps channels
- LAN (e.g., WiFi)
 - 54 Mbps
- wide-area (e.g., cellular)
 - 4G cellular: ~ 10 Mbps
- ✤ satellite
 - Kbps to 45Mbps channel (or multiple smaller channels)
 - 270 msec end-end delay
 - geosynchronous versus low altitude

