

THE UNIVERSITY OF WINNIPEG

ACS-3911-050 Computer Network

Chapter 4 The Network Layer: The Data Plane

A note on the use of these PowerPoint slides:

We're making these slides freely available to all (faculty, students, readers). They're in PowerPoint form so you see the animations; and can add, modify, and delete slides (including this one) and slide content to suit your needs. They obviously represent a lot of work on our part. In return for use, we only ask the following:

- If you use these slides (e.g., in a class) that you mention their source (after all, we'd like people to use our book!)
- If you post any slides on a www site, that you note that they are adapted from (or perhaps identical to) our slides, and note our copyright of this material.

Thanks and enjoy! JFK/KWR

All material copyright 1996-2016 J.F Kurose and K.W. Ross, All Rights Reserved

- 4.1 Overview of Network layer
 - Data plane
 - Control Plane
- 4.3 what's inside a router
- **4.4 IP: Internet Protocol**
 - datagram format
 - fragmentation
 - IPv4 addressing
 - Network address translation
 - IPv6
- 4.4 Generalized Forward and SDN
 - match
 - action
 - OpenFlow examples of match-plus-action in action

our goals:

- understand principles behind network layer services, focusing on data plane:
 - network layer service models
 - forwarding versus routing
 - how a router works
 - generalized forwarding
- instantiation, implementation in the Internet

- transport segment from sending to receiving host
- on sending side encapsulates segments into datagrams
- on receiving side, delivers segments to transport layer
- network layer protocols in every host, router
- router examines header fields in all IP datagrams passing through it

network-layer functions:

- *forwarding:* move packets from router's input to appropriate router output
- routing: determine route taken by packets from source to destination.
 routing algorithms

analogy: taking a trip

- *forwarding:* process of getting through single interchange
- *routing:* process of planning trip from source to destination

Data plane

local, per-router function
determines how datagram arriving on router input port is forwarded to router output port
forwarding function

Control plane

- network-wide logic
- determines how datagram is routed among routers along endend path from source host to destination host
- two control-plane approaches:
 - *traditional routing algorithms:* implemented in routers
 - software-defined networking (SDN): implemented in (remote) servers

Per-router control plane

Individual routing algorithm components *in each and every router* interact in the control plane

Logically centralized control plane

A distinct (typically remote) controller interacts with local control agents (CAs)

Q: What service model for "channel" transporting datagrams from sender to receiver?

- example services for individual datagrams:
- guaranteed delivery
- guaranteed delivery with less than 40 msec delay

example services for a flow of datagrams:

- in-order datagram delivery
- guaranteed minimum bandwidth to flow
- restrictions on changes in inter-packet spacing

Ν	Network itecture	Service Model	Guarantees ?				Congestion
Arch			Bandwidth	Loss	Order	Timing	feedback
	Internet	best effort	none	no	no	no	no (inferred via loss)
	ATM	CBR	constant rate	yes	yes	yes	no congestion
	ATM	VBR	guaranteed rate	yes	yes	yes	no congestion
	ATM	ABR	guaranteed minimum	no	yes	NO	yes
	ATM	UBR	none	no	yes	no	no

Roadmap

4.1 Overview of Network layer

- Data plane
- Control Plane

4.3 what's inside a router

4.4 IP: Internet Protocol

- datagram format
- fragmentation
- IPv4 addressing
- Network address translation
- IPv6
- **4.4 Generalized Forward and SDN**
 - match
 - action
 - OpenFlow examples of match-plus-action in action

high-level view of generic router architecture:

Input Port Functions

Input Port Functions

forwarding table							
Destination Address Range	Link Interface						
11001000 00010111 00010000 00000000 through 11001000 00010111 00010111 1111111	0						
11001000 00010111 00011000 00000000 through 11001000 00010111 00011000 11111111	1						
11001000 00010111 00011001 00000000 through 11001000 00010111 00011111 1111111	2						
otherwise	3						

Q: but what happens if ranges don't divide up so nicely?

longest prefix matching

when looking for forwarding table entry for given destination address, use *longest* address prefix that matches destination address.

Destination Address Range	Link interface	
11001000 00010111 00010*** *******	0	
11001000 00010111 00011000 ********	1	
11001000 00010111 00011*** ********	2	
otherwise	3	

examples:

DA: 11001000 00010111 00010110 10100001 DA: 11001000 00010111 00011000 10101010

which interface? which interface?

- we'll see why longest prefix matching is used shortly, when we study addressing
- longest prefix matching: often performed using ternary content addressable memories (TCAMs)
 - content addressable: present address to TCAM: retrieve address in one clock cycle, regardless of table size
 - Cisco Catalyst: can up ~IM routing table entries in TCAM

- transfer packet from input buffer to appropriate output buffer
- switching rate: rate at which packets can be transfer from inputs to outputs
 - often measured as multiple of input/output line rate
 - N inputs: switching rate N times line rate desirable
- three types of switching fabrics

first generation routers:

- traditional computers with switching under direct control of CPU
- packet copied to system's memory
- speed limited by memory bandwidth (2 bus crossings per datagram)

- datagram from input port memory to output port memory via a shared bus
- bus contention: switching speed limited by bus bandwidth
- 32 Gbps bus, Cisco 5600: sufficient speed for access and enterprise routers

bus

banyan networks, crossbar, other

- developed to connect processors in multiprocessor
- advanced design: fragmenting datagram into fixed length cells, switch cells through the fabric.

 Cisco 12000: switches 60 Gbps through the interconnection network

Switching Via Interconnection Network

- overcome bus bandwidth limitations
- interconnection nets initially

