
ACS-3911-050 Computer Network

Chapter 4
The Network Layer:

The Data Plane

ACS-3911-050 – Slides Used In The Course

A note on the use of these PowerPoint slides:

We’re making these slides freely available to all (faculty,
students, readers). They’re in PowerPoint form so you see
the animations; and can add, modify, and delete slides
(including this one) and slide content to suit your needs.
They obviously represent a lot of work on our part. In
return for use, we only ask the following:

• If you use these slides (e.g., in a class) that you mention
their source (after all, we’d like people to use our
book!)

• If you post any slides on a www site, that you note that
they are adapted from (or perhaps identical to) our
slides, and note our copyright of this material.

Thanks and enjoy! JFK/KWR

 All material copyright 1996-2016
 J.F Kurose and K.W. Ross, All Rights Reserved

Input Port Queuing

• fabric slower than input ports combined -> queueing may occur
at input queues

 queueing delay and loss due to input buffer overflow!

• Head-of-the-Line (HOL) blocking: queued datagram at front of
queue prevents others in queue from moving forward

output port contention:

only one red datagram can be transferred.

lower red packet is blocked

switch

fabric

one packet time later: green

packet experiences HOL

blocking

switch

fabric

Output Ports

line

termination

link
layer

protocol
(send)

switch
fabric

datagram

buffer

queueing

 buffering required when datagrams arrive from fabric
faster than the transmission rate
Note: Datagram (packets) can be lost due to
congestion, lack of buffers

 scheduling discipline chooses among queued
datagrams for transmission
Note: Priority scheduling – who gets best
performance, network neutrality

Output Port Queuing

at t, packets more

from input to output

one packet time later

switch

fabric

switch

fabric

• buffering when arrival rate via switch exceeds output
line speed

• queueing (delay) and loss due to output port buffer
overflow!

How Much Buffering?

• RFC 3439 rule of thumb: average buffering equal to
“typical” RTT (say 250 msec) times link capacity C

 e.g., C = 10 Gpbs link: 2.5 Gbit buffer

• recent recommendation: with N flows, buffering equal
to

RTT C .

N

Scheduling mechanisms

 scheduling: choose next packet to send on link

 FIFO (first in first out) scheduling: send in order of arrival
to queue
• real-world example?

• discard policy: if packet arrives to full queue: who to discard?

• tail drop: drop arriving packet

• priority: drop/remove on priority basis

• random: drop/remove randomly

queue

(waiting area)

packet

arrivals
packet

departures link

 (server)

Scheduling policies: priority

priority scheduling: send
highest priority queued
packet

 multiple classes, with
different priorities

• class may depend on
marking or other
header info, e.g. IP
source/dest, port
numbers, etc.

• real world example?

high priority queue

(waiting area)

low priority queue

(waiting area)

arrivals

classify

departures

link

 (server)

1 3 2 4 5

5

5

2

2

1

1

3

3 4

4

arrivals

departures

packet
in

service

Scheduling policies: still more

Round Robin (RR) scheduling:

 multiple classes

 cyclically scan class queues, sending one complete
packet from each class (if available)

 real world example?

1 2 3 4 5

5

5

2

3

1

1

3

3 4

4

arrivals

departures

packet
in

service

Scheduling policies: still more

Weighted Fair Queuing (WFQ):

 generalized Round Robin

 each class gets weighted amount of service in each cycle

 real-world example?

Roadmap

4.1 Overview of Network layer
• Data plane
• Control Plane

4.3 what’s inside a router
4.4 IP: Internet Protocol

• datagram format
• fragmentation
• IPv4 addressing
• Network address translation
• IPv6

4.4 Generalized Forward and SDN
• match
• action
• OpenFlow examples of match-plus-action in action

The Internet Network Layer

host, router network layer functions:

forwarding

table

routing protocols
• path selection

• RIP, OSPF, BGP

IP protocol
• addressing conventions

• datagram format

• packet handling conventions

ICMP protocol
• error reporting

• router “signaling”

transport layer: TCP, UDP

link layer

physical layer

network

layer

IP Datagram Format

ver length

32 bits

data

(variable length,

typically a TCP

or UDP segment)

16-bit identifier

header

 checksum

time to

live

32 bit source IP address

head.

len

type of

service

flgs
fragment

 offset
upper

 layer

32 bit destination IP address

options (if any)

IP protocol version

number

header length

 (bytes)

upper layer protocol

to deliver payload to

total datagram

length (bytes)

“type” of data

for

fragmentation/

reassembly
max number

remaining hops

(decremented at

each router)

e.g. timestamp,

record route

taken, specify

list of routers

to visit.
how much overhead?

 20 bytes of TCP

 20 bytes of IP

 = 40 bytes + app layer
overhead

IP Fragmentation and Reassembly

• network links have MTU
(max.transfer size) - largest
possible link-level frame
 different link types,

different MTUs
• large IP datagram divided

(“fragmented”) within net
 one datagram becomes

several datagrams
 “reassembled” only at

final destination
 IP header bits used to

identify, order related
fragments

fragmentation:

in: one large datagram

out: 3 smaller datagrams

reassembly

…

…

IP Fragmentation and Reassembly (cont.)

ID

=x
offset

=0

fragflag

=0

length

=4000

ID

=x
offset

=0

fragflag

=1

length

=1500

ID

=x
offset

=185

fragflag

=1

length

=1500

ID

=x
offset

=370

fragflag

=0

length

=1040

one large datagram becomes

several smaller datagrams

example:
 4000 byte datagram

 MTU = 1500 bytes

1480 bytes in

data field

offset =

1480/8

IP Addressing: Introduction

• IP address: 32-bit
identifier for host, router
interface

• interface: connection
between host/router and
physical link

 router’s typically
have multiple
interfaces

 host typically has one
or two interfaces
(e.g., wired Ethernet,
wireless 802.11)

• IP addresses associated
with each interface

223.1.1.1

223.1.1.2

223.1.1.3

223.1.1.4 223.1.2.9

223.1.2.2

223.1.2.1

223.1.3.2 223.1.3.1

223.1.3.27

223.1.1.1 = 11011111 00000001 00000001 00000001

223 1 1 1

IP Addressing: Introduction (cont.)

Q: how are interfaces
actually connected?

A: we’ll learn about that in
chapter 5, 6.

223.1.1.1

223.1.1.2

223.1.1.3

223.1.1.4 223.1.2.9

223.1.2.2

223.1.2.1

223.1.3.2 223.1.3.1

223.1.3.27

A: wired Ethernet interfaces
connected by Ethernet switches

A: wireless WiFi interfaces connected
by WiFi base station

For now: don’t need to worry
about how one interface is
connected to another (with no
intervening router)

Subnets

• IP address:

subnet part - high order
bits

host part - low order
bits

• what’s a subnet ?

device interfaces with
same subnet part of IP
address

can physically reach
each other without
intervening router

network consisting of 3 subnets

223.1.1.1

223.1.1.3

223.1.1.4 223.1.2.9

223.1.3.2
223.1.3.1

subnet

223.1.1.2

223.1.3.27
223.1.2.2

223.1.2.1

Subnets (cont.)

recipe

• to determine the subnets,
detach each interface
from its host or router,
creating islands of
isolated networks

• each isolated network is
called a subnet

subnet mask: /24

223.1.1.0/24
223.1.2.0/24

223.1.3.0/24

223.1.1.1

223.1.1.3

223.1.1.4 223.1.2.9

223.1.3.2 223.1.3.1

subnet

223.1.1.2

223.1.3.27
223.1.2.2

223.1.2.1

Subnets (cont.)

223.1.1.1

223.1.1.3

223.1.1.4

223.1.2.2 223.1.2.1

223.1.2.6

223.1.3.2 223.1.3.1

223.1.3.27

223.1.1.2

223.1.7.0

223.1.7.1
223.1.8.0 223.1.8.1

223.1.9.1

223.1.9.2

how many?

6

223.1.1.0/24

223.1.2.0/24 223.1.3.0/24

223.1.7.0/24 223.1.9.0/24

223.1.8.0/24

IP Addressing: Classless InterDomain Routing (CIDR)

CIDR: Classless InterDomain Routing

 subnet portion of address of arbitrary length

 address format: a.b.c.d/x, where x is # bits in subnet
portion of address

11001000 00010111 00010000 00000000

subnet

part

host

part

200.23.16.0/23

IP Addresses: Assigning of IP Address

Q: How does a host get IP address?

• hard-coded by system admin in a file
 Windows: control-panel->network->configuration-

>tcp/ip->properties
 UNIX: /etc/rc.config

• DHCP: Dynamic Host Configuration Protocol:
dynamically get address from as server
 “plug-and-play”

DHCP: Dynamic Host Configuration Protocol

goal: allow host to dynamically obtain its IP address from network
server when it joins network

 can renew its lease on address in use

 allows reuse of addresses (only hold address while
connected/“on”)

 support for mobile users who want to join network (more
shortly)

DHCP overview:
 host broadcasts “DHCP discover” msg [optional]

 DHCP server responds with “DHCP offer” msg [optional]

 host requests IP address: “DHCP request” msg

 DHCP server sends address: “DHCP ack” msg

DHCP Client-Server Scenario

223.1.1.0/24

223.1.2.0/24

223.1.3.0/24

223.1.1.1

223.1.1.3

223.1.1.4 223.1.2.9

223.1.3.2 223.1.3.1

223.1.1.2

223.1.3.27
223.1.2.2

223.1.2.1

DHCP
server

arriving DHCP
client needs
address in this
network

DHCP Client-Server Scenario (cont.)

DHCP server: 223.1.2.5 arriving
 client

DHCP discover

src : 0.0.0.0, 68

dest.: 255.255.255.255,67

yiaddr: 0.0.0.0

transaction ID: 654

DHCP offer

src: 223.1.2.5, 67

dest: 255.255.255.255, 68

yiaddrr: 223.1.2.4

transaction ID: 654

lifetime: 3600 secs
DHCP request

src: 0.0.0.0, 68

dest:: 255.255.255.255, 67

yiaddrr: 223.1.2.4

transaction ID: 655

lifetime: 3600 secs

DHCP ACK

src: 223.1.2.5, 67

dest: 255.255.255.255, 68

yiaddrr: 223.1.2.4

transaction ID: 655

lifetime: 3600 secs

Broadcast: is there a
DHCP server out there?

Broadcast: I’m a DHCP
server! Here’s an IP
address you can use

Broadcast: OK. I’ll take
that IP address!

Broadcast: OK. You’ve
got that IP address!

DHCP: More Than IP Addresses

DHCP can return more than just allocated IP address on
subnet:
 address of first-hop router for client

 name and IP address of DNS sever

 network mask (indicating network versus host portion of
address)

DHCP: Example

• connecting laptop needs
its IP address, addr of
first-hop router, addr of
DNS server: use DHCP

router with DHCP

server built into

router

• DHCP request encapsulated
in UDP, encapsulated in IP,
encapsulated in 802.1
Ethernet

 • Ethernet frame broadcast
(dest: FFFFFFFFFFFF) on LAN,
received at router running
DHCP server

• Ethernet demuxed to IP
demuxed, UDP demuxed to
DHCP

168.1.1.1

DHCP

UDP

IP

Eth

Phy

DHCP

DHCP

DHCP

DHCP

DHCP

DHCP

UDP

IP

Eth

Phy

DHCP

DHCP

DHCP

DHCP DHCP

DHCP: Example

• DCP server formulates
DHCP ACK containing
client’s IP address, IP
address of first-hop
router for client, name &
IP address of DNS server
 • encapsulation of DHCP
server, frame forwarded
to client, demuxing up to
DHCP at client

router with DHCP

server built into

router

DHCP

DHCP

DHCP

DHCP

DHCP

UDP

IP

Eth

Phy

DHCP

DHCP

UDP

IP

Eth

Phy

DHCP

DHCP

DHCP

DHCP

• client now knows its IP
address, name and IP
address of DSN server, IP
address of its first-hop
router

DHCP: Wireshark Output (Home LAN)

Message type: Boot Request (1)
Hardware type: Ethernet
Hardware address length: 6
Hops: 0
Transaction ID: 0x6b3a11b7
Seconds elapsed: 0
Bootp flags: 0x0000 (Unicast)
Client IP address: 0.0.0.0 (0.0.0.0)
Your (client) IP address: 0.0.0.0 (0.0.0.0)
Next server IP address: 0.0.0.0 (0.0.0.0)
Relay agent IP address: 0.0.0.0 (0.0.0.0)
Client MAC address: Wistron_23:68:8a (00:16:d3:23:68:8a)
Server host name not given
Boot file name not given
Magic cookie: (OK)
Option: (t=53,l=1) DHCP Message Type = DHCP Request
Option: (61) Client identifier
 Length: 7; Value: 010016D323688A;
 Hardware type: Ethernet
 Client MAC address: Wistron_23:68:8a (00:16:d3:23:68:8a)
Option: (t=50,l=4) Requested IP Address = 192.168.1.101
Option: (t=12,l=5) Host Name = "nomad"
Option: (55) Parameter Request List
 Length: 11; Value: 010F03062C2E2F1F21F92B
 1 = Subnet Mask; 15 = Domain Name
 3 = Router; 6 = Domain Name Server
 44 = NetBIOS over TCP/IP Name Server
 ……

request

Message type: Boot Reply (2)
Hardware type: Ethernet
Hardware address length: 6
Hops: 0
Transaction ID: 0x6b3a11b7
Seconds elapsed: 0
Bootp flags: 0x0000 (Unicast)
Client IP address: 192.168.1.101 (192.168.1.101)
Your (client) IP address: 0.0.0.0 (0.0.0.0)
Next server IP address: 192.168.1.1 (192.168.1.1)
Relay agent IP address: 0.0.0.0 (0.0.0.0)
Client MAC address: Wistron_23:68:8a (00:16:d3:23:68:8a)
Server host name not given
Boot file name not given
Magic cookie: (OK)
Option: (t=53,l=1) DHCP Message Type = DHCP ACK
Option: (t=54,l=4) Server Identifier = 192.168.1.1
Option: (t=1,l=4) Subnet Mask = 255.255.255.0
Option: (t=3,l=4) Router = 192.168.1.1
Option: (6) Domain Name Server
 Length: 12; Value: 445747E2445749F244574092;
 IP Address: 68.87.71.226;
 IP Address: 68.87.73.242;
 IP Address: 68.87.64.146
Option: (t=15,l=20) Domain Name = "hsd1.ma.comcast.net."

reply

IP Addresses: How to Get One?

Q: how does network get subnet part of IP addr?

A: gets allocated portion of its provider ISP’s address
space

ISP's block 11001000 00010111 00010000 00000000 200.23.16.0/20

Organization 0 11001000 00010111 00010000 00000000 200.23.16.0/23

Organization 1 11001000 00010111 00010010 00000000 200.23.18.0/23

Organization 2 11001000 00010111 00010100 00000000 200.23.20.0/23

 ... ….. …. ….

Organization 7 11001000 00010111 00011110 00000000 200.23.30.0/23

Hierarchical Addressing: Route Aggregation

hierarchical addressing allows efficient advertisement of routing

information:

“Send me anything

with addresses

beginning

200.23.16.0/20”

200.23.16.0/23

200.23.18.0/23

200.23.30.0/23

Fly-By-Night-ISP

Organization 0

Organization 7
Internet

Organization 1

ISPs-R-Us
“Send me anything

with addresses

beginning

199.31.0.0/16”

200.23.20.0/23

Organization 2

.

.

.

.

.

.

Hierarchical Addressing: More Specific Routes

ISPs-R-Us has a more specific route to Organization 1

“Send me anything

with addresses

beginning

200.23.16.0/20”

200.23.16.0/23

200.23.18.0/23

200.23.30.0/23

Fly-By-Night-ISP

Organization 0

Organization 7
Internet

Organization 1

ISPs-R-Us
“Send me anything

with addresses

beginning 199.31.0.0/16

or 200.23.18.0/23”

200.23.20.0/23

Organization 2

.

.

.

.

.

.

IP Addressing: The Last Word

Q: how does an ISP get block of addresses?

A: ICANN: Internet Corporation for Assigned

 Names and Numbers http://www.icann.org/

 allocates addresses

 manages DNS

 assigns domain names, resolves disputes

NAT: Network Address Translation

10.0.0.1

10.0.0.2

10.0.0.3

10.0.0.4

138.76.29.7

local network

(e.g., home network)

10.0.0/24

rest of

Internet

datagrams with source or
destination in this network
have 10.0.0/24 address for
source, destination (as usual)

all datagrams leaving local
network have same single

source NAT IP address:
138.76.29.7,different source

port numbers

NAT: Network Address Translation

motivation: local network uses just one IP address as far
as outside world is concerned:

 range of addresses not needed from ISP: just one IP
address for all devices

 can change addresses of devices in local network
without notifying outside world

 can change ISP without changing addresses of
devices in local network

 devices inside local net not explicitly addressable,
visible by outside world (a security plus)

NAT: Network Address Translation

 implementation: NAT router must:

 outgoing datagrams: replace (source IP address, port #) of

every outgoing datagram to (NAT IP address, new port #)

. . . remote clients/servers will respond using (NAT IP
address, new port #) as destination addr

 remember (in NAT translation table) every (source IP address,
port #) to (NAT IP address, new port #) translation pair

 incoming datagrams: replace (NAT IP address, new port #) in
dest fields of every incoming datagram with corresponding
(source IP address, port #) stored in NAT table

NAT: Network Address Translation

10.0.0.1

10.0.0.2

10.0.0.3

S: 10.0.0.1, 3345

D: 128.119.40.186, 80

1

10.0.0.4

138.76.29.7

1: host 10.0.0.1
sends datagram to
128.119.40.186, 80

NAT translation table

WAN side addr LAN side addr

138.76.29.7, 5001 10.0.0.1, 3345

…… ……

S: 128.119.40.186, 80

D: 10.0.0.1, 3345

4

S: 138.76.29.7, 5001

D: 128.119.40.186, 80 2

2: NAT router
changes datagram
source addr from
10.0.0.1, 3345 to
138.76.29.7, 5001,
updates table

S: 128.119.40.186, 80

D: 138.76.29.7, 5001

3

3: reply arrives
 dest. address:
 138.76.29.7, 5001

4: NAT router
changes datagram
dest addr from
138.76.29.7, 5001 to 10.0.0.1, 3345

NAT: Network Address Translation

• 16-bit port-number field:

 60,000 simultaneous connections with a single LAN-
side address!

• NAT is controversial:

 routers should only process up to layer 3

 address shortage should instead be solved by IPv6

 violates end-to-end argument

• NAT possibility must be taken into account by app

designers, e.g., P2P applications

 NAT traversal: what if client wants to connect to
server behind NAT?

NAT Traversal Problem

• client wants to connect to
server with address 10.0.0.1

 server address 10.0.0.1 local
to LAN (client can’t use it as
destination addr)

 only one externally visible
NATed address: 138.76.29.7

• solution1: statically configure
NAT to forward incoming
connection requests at given
port to server

 e.g., (123.76.29.7, port 2500)
always forwarded to 10.0.0.1
port 25000

10.0.0.1

10.0.0.4

NAT
router

138.76.29.7

client

?

NAT Traversal Problem

• solution 2: Universal Plug and Play
(UPnP) Internet Gateway Device
(IGD) Protocol. Allows NATed
host to:
 learn public IP address

(138.76.29.7)
 add/remove port mappings

(with lease times)

i.e., automate static NAT port
map configuration

10.0.0.1

NAT
router

IGD

NAT Traversal Problem

• solution 3: relaying (used in Skype)

 NATed client establishes connection to relay

 external client connects to relay

 relay bridges packets between to connections

138.76.29.7

client

1. connection to
relay initiated
by NATed host

2. connection to
relay initiated
by client

3. relaying
established

NAT
router

10.0.0.1

IPv6 - Motivation

• initial motivation: 32-bit address space soon to be
completely allocated.

• additional motivation:

 header format helps speed processing/forwarding

 header changes to facilitate QoS

IPv6 datagram format:

 fixed-length 40 byte header

 no fragmentation allowed

IPv6 Datagram Format

priority: identify priority among datagrams in flow

flow Label: identify datagrams in same “flow.”
 (concept of“flow” not well defined).

next header: identify upper layer protocol for data

data

destination address
(128 bits)

source address
(128 bits)

payload len next hdr hop limit

flow label pri ver

32 bits

Other Changes From IPv4

• checksum: removed entirely to reduce processing time
at each hop

• options: allowed, but outside of header, indicated by
“Next Header” field

• ICMPv6: new version of ICMP

 additional message types, e.g. “Packet Too Big”

 multicast group management functions

Transition From IPv4 to IPv6

• not all routers can be upgraded simultaneously
 no “flag days”
 how will network operate with mixed IPv4 and IPv6

routers?
• tunneling: IPv6 datagram carried as payload in IPv4

datagram among IPv4 routers

IPv4 source, dest addr

IPv4 header fields

IPv4 datagram

IPv6 datagram

IPv4 payload

UDP/TCP payload

IPv6 source dest addr

IPv6 header fields

Tunneling

physical view:

IPv4 IPv4

A B

IPv6 IPv6

E

IPv6 IPv6

F C D

logical view:

IPv4 tunnel
connecting IPv6 routers

E

IPv6 IPv6

F A B

IPv6 IPv6

Tunneling

flow: X

src: A

dest: F

data

A-to-B:
IPv6

Flow: X

Src: A

Dest: F

data

src:B

dest: E

B-to-C:
IPv6 inside

IPv4

E-to-F:
IPv6

flow: X

src: A

dest: F

data

B-to-C:
IPv6 inside

IPv4

Flow: X

Src: A

Dest: F

data

src:B

dest: E

physical view:
A B

IPv6 IPv6

E

IPv6 IPv6

F C D

logical view:

IPv4 tunnel
connecting IPv6 routers

E

IPv6 IPv6

F A B

IPv6 IPv6

IPv4 IPv4

IPv6: adoption

• Google: 8% of clients access services via IPv6

• NIST: 1/3 of all US government domains are IPv6
capable

• Long (long!) time for deployment, use

–20 years and counting!

–think of application-level changes in last 20 years:

WWW, Facebook, streaming media, Skype, …

–Why?

Network Layer: Data Plane 4-49

Roadmap

4.1 Overview of Network layer
• Data plane
• Control Plane

4.3 what’s inside a router
4.4 IP: Internet Protocol

• datagram format
• fragmentation
• IPv4 addressing
• Network address translation
• IPv6

4.4 Generalized Forward and SDN
• match
• action
• OpenFlow examples of match-plus-action in action

2 3

0100 1101

values in arriving

packet’s header

logically-centralized routing controller

1

control plane

data plane

Each router contains a flow table that is computed and distributed by a logically

centralized routing controller

local flow table

headers counters actions

Generalized Forwarding and SDN

Network Layer: Data Plane

OpenFlow data plane abstraction

• flow: defined by header fields
• generalized forwarding: simple packet-handling rules

– Pattern: match values in packet header fields
– Actions: for matched packet: drop, forward, modify, matched

packet or send matched packet to controller
– Priority: disambiguate overlapping patterns
– Counters: #bytes and #packets

Flow table in a router (computed and distributed by controller)
define router’s match+action rules

OpenFlow data plane abstraction

• flow: defined by header fields
• generalized forwarding: simple packet-handling rules

– Pattern: match values in packet header fields
– Actions: for matched packet: drop, forward, modify, matched

packet or send matched packet to controller
– Priority: disambiguate overlapping patterns
– Counters: #bytes and #packets

1. src=1.2.*.*, dest=3.4.5.* drop
2. src = *.*.*.*, dest=3.4.*.* forward(2)
3. src=10.1.2.3, dest=*.*.*.* send to controller

* : wildcard

OpenFlow: Flow Table Entries

Switch
Port

MAC
src

MAC
dst

Eth
type

VLAN
ID

IP
Src

IP
Dst

IP
Prot

TCP
sport

TCP
dport

Rule Action Stats

1. Forward packet to port(s)
2. Encapsulate and forward to controller
3. Drop packet
4. Send to normal processing pipeline
5. Modify Fields

Packet + byte counters

Link layer Network layer Transport layer

Destination-based forwarding:

*

Switch
Port

MAC
src

MAC
dst

Eth
type

VLAN
ID

IP
Src

IP
Dst

IP
Prot

TCP
sport

TCP
dport

Action

* * * * * 51.6.0.8 * * * port6

IP datagrams destined to IP address 51.6.0.8 should

be forwarded to router output port 6

*

Switch
Port

MAC
src

MAC
dst

Eth
type

VLAN
ID

IP
Src

IP
Dst

IP
Prot

TCP
sport

TCP
dport

Forward

* * * * * * * * 22 drop

Firewall:

do not forward (block) all datagrams destined to TCP port 22

*

Switch
Port

MAC
src

MAC
dst

Eth
type

VLAN
ID

IP
Src

IP
Dst

IP
Prot

TCP
sport

TCP
dport

Forward

* * * * 128.119.1.1 * * * * drop

do not forward (block) all datagrams sent by host 128.119.1.1

Examples

Destination-based layer 2 (switch) forwarding:

*

Switch
Port

MAC
src

MAC
dst

Eth
type

VLAN
ID

IP
Src

IP
Dst

IP
Prot

TCP
sport

TCP
dport

Action

* * * * * * * * port3

layer 2 frames from MAC address 22:A7:23:11:E1:02

should be forwarded to output port 6

22:A7:23:
11:E1:02

Examples

OpenFlow abstraction

 Router
• match: longest destination IP

prefix
• action: forward out a link

 Switch
• match: destination MAC address
• action: forward or flood

4-57

 Firewall
• match: IP addresses

and TCP/UDP port
numbers

• action: permit or deny
 NAT

• match: IP address and
port

• action: rewrite address
and port

 match+action: unifies different kinds of devices

IP Src = 10.3.*.*

IP Dst = 10.2.*.*
forward(3)

match action

ingress port = 2

IP Dst = 10.2.0.3

ingress port = 2

IP Dst = 10.2.0.4

forward(3)

match action

forward(4)

ingress port = 1

IP Src = 10.3.*.*

IP Dst = 10.2.*.*

forward(4)

match action

OpenFlow example

Host h1

10.1.0.1

 Host h2

10.1.0.2

Host h4

10.2.0.4

Host h3

10.2.0.3

Host h5

10.3.0.5

s1 s2

s3 1

2

3 4

1

2

3

4

1

2

3

4

Host h6

10.3.0.6

controller

Example: datagrams from

hosts h5 and h6 should

be sent to h3 or h4, via s1

and from there to s2

Summary

 understand principles behind network layer (data plane)
services:

 network layer service models

 forwarding versus routing

 how a router works

 generalized forwarding

 instantiation, implementation in the Internet

 Question: how do forwarding tables (destination-based
forwarding) or flow tables (generalized forwarding) computed?

Answer: by the control plane (next chapter)

ACS-3911-050 – Questions?

