
ACS-3911-050 Computer Network

Chapter 2
Application Layer

ACS-3911-050 – Slides Used In The Course

A note on the use of these PowerPoint slides:

We’re making these slides freely available to all (faculty,
students, readers). They’re in PowerPoint form so you see
the animations; and can add, modify, and delete slides
(including this one) and slide content to suit your needs.
They obviously represent a lot of work on our part. In
return for use, we only ask the following:

• If you use these slides (e.g., in a class) that you mention
their source (after all, we’d like people to use our
book!)

• If you post any slides on a www site, that you note that
they are adapted from (or perhaps identical to) our
slides, and note our copyright of this material.

Thanks and enjoy! JFK/KWR

 All material copyright 1996-2016
 J.F Kurose and K.W. Ross, All Rights Reserved

Roadmap

2.1 principles of network applications

2.2 Web and HTTP

2.3 electronic mail

• SMTP, POP3, IMAP

2.4 DNS

2.5 P2P applications

2.6 video streaming and content distribution networks

2.7 socket programming with UDP and TCP

Video Streaming and CDNs: context

• video traffic: major consumer of Internet bandwidth
– Netflix, YouTube: 37%, 16% of downstream residential ISP

traffic
– ~1B YouTube users, ~75M Netflix users

• challenge: scale - how to reach ~1B users?
– single mega-video server won’t work (why?)

• challenge: heterogeneity
– different users have different capabilities (e.g., wired versus

mobile; bandwidth rich versus bandwidth poor)
• solution: distributed, application-level infrastructure

Multimedia: video

• video: sequence of images
displayed at constant rate

– e.g., 24 images/sec

• digital image: array of pixels

– each pixel represented
by bits

• coding: use redundancy
within and between images
to decrease # bits used to
encode image

– spatial (within image)

– temporal (from one
image to next)

……………………..

spatial coding example: instead

of sending N values of same

color (all purple), send only two

values: color value (purple) and

number of repeated values (N)
……………….…….

frame i

frame i+1

temporal coding example:

instead of sending

complete frame at i+1,

send only differences from

frame i

Multimedia: video

 CBR: (constant bit rate):

video encoding rate fixed

 VBR: (variable bit rate):

video encoding rate changes

as amount of spatial,

temporal coding changes

 examples:

• MPEG 1 (CD-ROM) 1.5

Mbps

• MPEG2 (DVD) 3-6 Mbps

• MPEG4 (often used in

Internet, < 1 Mbps)

……………………..

spatial coding example: instead

of sending N values of same

color (all purple), send only two

values: color value (purple) and

number of repeated values (N)
……………….…….

frame i

frame i+1

temporal coding example:

instead of sending

complete frame at i+1,

send only differences from

frame i

Streaming stored video

simple scenario:

video server

(stored video)
client

Internet

Streaming multimedia: DASH

DASH: Dynamic, Adaptive Streaming over HTTP
• server:

 divides video file into multiple chunks
 each chunk stored, encoded at different rates
 manifest file: provides URLs for different chunks

• client:
• periodically measures server-to-client bandwidth
• consulting manifest, requests one chunk at a time

 chooses maximum coding rate sustainable given current

bandwidth

 can choose different coding rates at different points in time

(depending on available bandwidth at time)

Streaming multimedia: DASH

DASH: Dynamic, Adaptive Streaming over HTTP
• “intelligence” at client: client determines

 when to request chunk (so that buffer starvation, or overflow
does not occur)

 what encoding rate to request (higher quality when more
bandwidth available)

 where to request chunk (can request from URL server that is
“close” to client or has high available bandwidth)

Content distribution networks

• challenge: how to stream content (selected from millions of
videos) to hundreds of thousands of simultaneous users?

• option 1: single, large “mega-server”

 single point of failure
 point of network congestion
 long path to distant clients
 multiple copies of video sent over outgoing link

….quite simply: this solution doesn’t scale

Content distribution networks

• challenge: how to stream content (selected from millions of
videos) to hundreds of thousands of simultaneous users?

• option 2: store/serve multiple copies of videos at multiple
geographically distributed sites (CDN)
 enter deep: push CDN servers deep into many access

networks
o close to users
o used by Akamai, 1700 locations

• bring home: smaller number (10’s) of larger clusters in POPs
near (but not within) access networks
• used by Limelight

Content distribution networks

 subscriber requests content from CDN

 CDN: stores copies of content at CDN nodes
• e.g. Netflix stores copies of MadMen

• directed to nearby copy, retrieves content
 • may choose different copy if network path congested

where’s Madmen?

manifest file

Content distribution networks

Internet host-host communication as a service

OTT challenges: coping with a congested Internet

– from which CDN node to retrieve content?

– viewer behavior in presence of congestion?

– what content to place in which CDN node?

“over the top”

more .. in chapter 7

CDN content access: a closer look

Bob (client) requests video http://netcinema.com/6Y7B23V
 video stored in CDN at http://KingCDN.com/NetC6y&B23V

netcinema.com

KingCDN.com

1

1. Bob gets URL for video

http://netcinema.com/6Y7B23V

from netcinema.com web page

2

2. resolve http://netcinema.com/6Y7B23V
via Bob’s local DNS

netcinema’s
authoratative DNS

3

3. netcinema’s DNS returns URL
http://KingCDN.com/NetC6y&B23V 4

4&5. Resolve
http://KingCDN.com/NetC6y&B23
via KingCDN’s authoritative DNS,
which returns IP address of KingCDN
server with video

5 6. request video from
KINGCDN server,
streamed via HTTP

KingCDN
authoritative DNS

Bob’s
local DNS
server

Case study: Netflix

1

1. Bob manages

Netflix account

Netflix registration,
accounting servers

Amazon cloud

CDN
server

2

2. Bob browses

Netflix video
3

3. Manifest file

returned for

requested video

4. DASH

streaming

upload copies of
multiple versions of
video to CDN servers

CDN
server

CDN
server

Roadmap

2.1 principles of network applications

2.2 Web and HTTP

2.3 electronic mail

• SMTP, POP3, IMAP

2.4 DNS

2.5 P2P applications

2.6 video streaming and content distribution networks

2.7 socket programming with UDP and TCP

Socket Programming

goal: learn how to build client/server applications that
communicate using sockets

socket: door between application process and end-end-transport
protocol

Internet

controlled

by OS

controlled by
app developer

transport

application

physical

link

network

process

transport

application

physical

link

network

process
socket

Socket Programming

Two socket types for two transport services:
 UDP: unreliable datagram
 TCP: reliable, byte stream-oriented

Application Example:
1. Client reads a line of characters (data) from its keyboard

and sends the data to the server.
2. The server receives the data and converts characters to

uppercase.
3. The server sends the modified data to the client.
4. The client receives the modified data and displays the line

on its screen.

Socket Programming with UDP

UDP: no “connection” between client & server

• no handshaking before sending data

• sender explicitly attaches IP destination address and port # to
each packet

• receiver extracts sender IP address and port# from received
packet

UDP: transmitted data may be lost or received out-of-order

Application viewpoint:
• UDP provides unreliable transfer of groups of bytes

(“datagrams”) between client and server

Client/Server Socket Interaction: UDP

close

clientSocket

read datagram from

clientSocket

create socket:

 clientSocket =

socket(AF_INET,SOCK_DGRAM)

Create datagram with server IP and

port=x; send datagram via

clientSocket

create socket, port= x:

serverSocket =

socket(AF_INET,SOCK_DGRAM)

read datagram from

serverSocket

write reply to

serverSocket

specifying

client address,

port number

server (running on serverIP) client

Example Application: UDP Client

from socket import *

serverName = ‘hostname’

serverPort = 12000

clientSocket = socket(socket.AF_INET,

 socket.SOCK_DGRAM)

message = raw_input(’Input lowercase sentence:’)

clientSocket.sendto(message,(serverName, serverPort))

modifiedMessage, serverAddress =

 clientSocket.recvfrom(2048)

print modifiedMessage

clientSocket.close()

Python UDPClient
include Python’s socket

library

create UDP socket for

server

get user keyboard

input

print out received string

and close socket

read reply characters from

socket into string

Attach server name, port to

message; send into socket

Example Application: UDP Server

from socket import *

serverPort = 12000

serverSocket = socket(AF_INET, SOCK_DGRAM)

serverSocket.bind(('', serverPort))

print “The server is ready to receive”

while 1:

 message, clientAddress = serverSocket.recvfrom(2048)

 modifiedMessage = message.upper()

 serverSocket.sendto(modifiedMessage, clientAddress)

Python UDPServer

create UDP socket

bind socket to local port

number 12000

loop forever

Read from UDP socket into
message, getting client’s
address (client IP and port)

send upper case string

back to this client

Socket Programming with TCP

client must contact server

 server process must first
be running

 server must have created
socket (door) that
welcomes client’s contact

client contacts server by:

 Creating TCP socket,
specifying IP address, port
number of server process

 when client creates socket:
client TCP establishes
connection to server TCP

 when contacted by client,
server TCP creates new
socket for server process to
communicate with that
particular client

 allows server to talk
with multiple clients

 source port numbers
used to distinguish
clients (more in Chap 3)

application viewpoint:

TCP provides reliable, in-order
byte-stream transfer (“pipe”)
between client and server

Client/Server Socket Interaction: TCP

wait for incoming

connection request
connectionSocket =

serverSocket.accept()

create socket,
port=x, for incoming

request:
serverSocket = socket()

create socket,
connect to hostid, port=x

clientSocket = socket()

Server (running on hostid) Client

send request using

clientSocket read request from

connectionSocket

write reply to

connectionSocket

TCP
connection setup

close

connectionSocket

read reply from

clientSocket

close

clientSocket

Example Application: TCP Client

from socket import *

serverName = ’servername’

serverPort = 12000

clientSocket = socket(AF_INET, SOCK_STREAM)

clientSocket.connect((serverName,serverPort))

sentence = raw_input(‘Input lowercase sentence:’)

clientSocket.send(sentence)

modifiedSentence = clientSocket.recv(1024)

print ‘From Server:’, modifiedSentence

clientSocket.close()

Python TCPClient

create TCP socket for

server, remote port 12000

No need to attach server

name, port

Example Application: TCP Server

Application Layer 2-26

from socket import *

serverPort = 12000

serverSocket = socket(AF_INET,SOCK_STREAM)

serverSocket.bind((‘’,serverPort))

serverSocket.listen(1)

print ‘The server is ready to receive’

while 1:

 connectionSocket, addr = serverSocket.accept()

 sentence = connectionSocket.recv(1024)

 capitalizedSentence = sentence.upper()

 connectionSocket.send(capitalizedSentence)

 connectionSocket.close()

Python TCPServer

create TCP welcoming

socket

server begins listening for

incoming TCP requests

loop forever

server waits on accept()

for incoming requests, new

socket created on return

read bytes from socket (but

not address as in UDP)

close connection to this client

(but not welcoming socket)

Summary

• application architectures

 client-server

 P2P

• application service
requirements:

 reliability, bandwidth, delay

• Internet transport service
model

 connection-oriented,
reliable: TCP

 unreliable, datagrams: UDP

• specific protocols:

HTTP

SMTP, POP, IMAP

DNS

P2P: BitTorrent

• Video streaming, CDN

• socket programming: TCP,

UDP sockets

our study of network apps now complete!

Summary (cont.)

most importantly: learned about protocols!

• typical request/reply
message exchange:

 client requests info or
service

 server responds with
data, status code

• message formats:

 headers: fields giving
info about data

 data: info being
communicated

important themes:

• control vs. data msgs

 in-band, out-of-band

• centralized vs. decentralized

• stateless vs. stateful

• reliable vs. unreliable

message transfer

• “complexity at network

edge”

ACS-3911-050 – Questions?

