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Chapter Goal and Overview  

our goals:  
• understand principles behind transport layer services: 

 Multiplexing and demultiplexing 

 reliable data transfer 

 flow control 

 congestion control 

• learn about Internet transport layer protocols: 
 UDP: connectionless transport 

 TCP: connection-oriented reliable transport 

 TCP congestion control 



Roadmap  

3.1 transport-layer services 

3.2 multiplexing and demultiplexing 

3.3 connectionless transport: UDP 

3.4 principles of reliable data transfer 

3.5 connection-oriented transport: TCP 
 segment structure 
 reliable data transfer 
 flow control 
 connection management 

3.6 principles of congestion control 

3.7 TCP congestion control 



Roadmap – Let starts  

3.1 transport-layer services 

3.2 multiplexing and demultiplexing 

3.3 connectionless transport: UDP 

3.4 principles of reliable data transfer 

3.5 connection-oriented transport: TCP 
 segment structure 
 reliable data transfer 
 flow control 
 connection management 

3.6 principles of congestion control 

3.7 TCP congestion control 



Transport Services and Protocols 

• provide logical 
communication between 
app processes running on 
different hosts 

• transport protocols run in 
end systems  

 send side: breaks app 
messages into segments, 
passes to  network layer 

 rcv side: reassembles 
segments into messages, 
passes to app layer 

• more than one transport 
protocol available to apps 

 Internet: TCP and UDP 
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physical 



Transport vs. network layer 

• network layer: logical 
communication between 
hosts 

• transport layer: logical 
communication between 
processes  
 relies on, enhances, 

network layer services 

12 kids in Ann’s house 
sending letters to 12 
kids in Bill’s house: 

• hosts = houses 
• processes = kids 
• app messages = letters 

in envelopes 
• transport protocol = 

Ann and Bill who 
demux to in-house 
siblings 

• network-layer protocol 
= postal service 

 

household analogy: 



Internet Transport Layer Protocols 

• reliable, in-order delivery 
(TCP) 

 congestion control  

 flow control 

 connection setup 

• unreliable, unordered 
delivery: UDP 

 no-frills extension of 
“best-effort” IP 

• services not available:  

 delay guarantees 

 bandwidth guarantees 
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Roadmap 

3.1 transport-layer services 

3.2 multiplexing and demultiplexing 

3.3 connectionless transport: UDP 

3.4 principles of reliable data transfer 

3.5 connection-oriented transport: TCP 
 segment structure 
 reliable data transfer 
 flow control 
 connection management 

3.6 principles of congestion control 

3.7 TCP congestion control 



Multiplexing and Demultiplixing  

process 

socket 

use header info to deliver 
received segments to correct  
socket 

demultiplexing at receiver: 
handle data from multiple 
sockets, add transport header 
(later used for demultiplexing) 

multiplexing at sender: 
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How Demultiplexing Works 

• host receives IP datagrams 

 each datagram has source 
IP address, destination IP 
address 

 each datagram carries one 
transport-layer segment 

 each segment has source, 
destination port number  

• host uses IP addresses & 
port numbers to direct 
segment to appropriate 
socket 

source port # dest port # 

32 bits 

application 
data  

(payload) 

other header fields 

TCP/UDP segment format 



Connectionless Demultiplexing 

• recall: created socket has host-
local port #: 
DatagramSocket mySocket1        
= new DatagramSocket(12534); 

 

• when host receives UDP 
segment: 
 checks destination port # 

in segment 

 directs UDP segment to 
socket with that port # 

• recall: when creating 
datagram to send into 
UDP socket, must 
specify 
 destination IP address 

 destination port # 

IP datagrams with same 
dest. port #, but different 
source IP addresses 
and/or source port 
numbers will be directed 
to same socket at dest 



Connectionless Demux: Example 

DatagramSocket 
serverSocket = new 
DatagramSocket 

 (6428); 
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DatagramSocket 
mySocket1 = new 
DatagramSocket 
(5775); 

 

DatagramSocket 
mySocket2 = new 
DatagramSocket 

 (9157); 

 

source port: 9157 
dest port: 6428 

source port: 6428 
dest port: 9157 

source port: ? 
dest port: ? 

source port: ? 
dest port: ? 



Connection-Oriented Demux 

• TCP socket identified by 
4-tuple:  
 source IP address 

 source port number 

 dest IP address 

 dest port number 

• demux: receiver uses all 
four values to direct 
segment to appropriate 
socket 

 

• server host may support 
many simultaneous TCP 
sockets: 
 each socket identified by its 

own 4-tuple 

• web servers have 
different sockets for each 
connecting client 
 non-persistent HTTP will 

have different socket for 
each request 

 



Connection-Oriented Demux: Example 1  
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source IP,port: A,9157 
dest IP, port: B,80 

source IP,port: B,80 
dest IP,port: A,9157 

host: IP 
address A 

host: IP 
address C 

network 

P6 P5 
P3 

source IP,port: C,5775 
dest IP,port: B,80 

source IP,port: C,9157 
dest IP,port: B,80 three segments, all destined to IP address: B, 

 dest port: 80 are demultiplexed to different sockets 

server: IP 
address B 



Connection-Oriented Demux: Example 2 
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source IP,port: A,9157 
dest IP, port: B,80 

source IP,port: B,80 
dest IP,port: A,9157 

host: IP 
address A 

host: IP 
address C 

server: IP 
address B 

network 

P3 

source IP,port: C,5775 
dest IP,port: B,80 

source IP,port: C,9157 
dest IP,port: B,80 

P4 

threaded server 



Roadmap 

3.1 transport-layer services 

3.2 multiplexing and demultiplexing 

3.3 connectionless transport: UDP 

3.4 principles of reliable data transfer 

3.5 connection-oriented transport: TCP 
 segment structure 
 reliable data transfer 
 flow control 
 connection management 

3.6 principles of congestion control 

3.7 TCP congestion control 



UDP: User Datagram Protocol [RFC 768] 

• “no frills,” “bare bones” 
Internet transport protocol 

• “best effort” service, UDP 
segments may be: 

 lost 

 delivered out-of-order to 
app 

• connectionless: 

 no handshaking between 
UDP sender, receiver 

 each UDP segment handled 
independently of others 

• UDP use: 

 streaming multimedia 
apps (loss tolerant, rate 
sensitive) 

 DNS 

 SNMP 

• reliable transfer over UDP:  

 add reliability at 
application layer 

 application-specific error 
recovery! 



UDP: Segment Header 

source port # dest port # 

32 bits 

application 
data  

(payload) 

UDP segment format 

length checksum 

length, in bytes of 
UDP segment, 

including header 

 no connection 
establishment (which can 
add delay) 

 simple: no connection 
state at sender, receiver 

 small header size 

 no congestion control: 
UDP can blast away as 
fast as desired 

why is there a UDP? 



UDP Checksum 

Goal: detect “errors” (e.g., flipped bits) in transmitted 
segment 

 sender: 
• treat segment contents, 

including header fields,  
as sequence of 16-bit 
integers 

• checksum: addition 
(one’s complement 
sum) of segment 
contents 

• sender puts checksum 
value into UDP 
checksum field 

 

 

receiver: 
• compute checksum of 

received segment 

• check if computed 
checksum equals checksum 
field value: 

 NO - error detected 

 YES - no error detected. 
But maybe errors 
nonetheless? More later 
…. 

 



Internet Checksum: Example 

example: add two 16-bit integers 

1  1  1  1  0  0  1  1  0  0  1  1  0  0  1  1  0 
1  1  1  0  1  0  1  0  1  0  1  0  1  0  1  0  1 
 
1  1  0  1  1  1  0  1  1  1  0  1  1  1  0  1  1 
 
1  1  0  1  1  1  0  1  1  1  0  1  1  1  1  0  0 
1  0  1  0  0  0  1  0  0  0  1  0  0  0  0  1  1 

wraparound 

sum 

checksum 

Note: when adding numbers, a carryout from the most 
significant bit needs to be added to the result 

 



Questions? 


