
ACS-3911-050 Computer Network 

Chapter 3 
Transport Layer 



ACS-3911-050 – Slides Used In The Course 

A note on the use of these PowerPoint slides: 
 
We’re making these slides freely available to all (faculty, 
students, readers). They’re in PowerPoint form so you see 
the animations; and can add, modify, and delete slides  
(including this one) and slide content to suit your needs. 
They obviously represent a lot of work on our part. In 
return for use, we only ask the following: 

• If you use these slides (e.g., in a class) that you mention 
their source (after all, we’d like people to use our 
book!) 

• If you post any slides on a www site, that you note that 
they are adapted from (or perhaps identical to) our 
slides, and note our copyright of this material. 

 
Thanks and enjoy!  JFK/KWR 
 
     All material copyright 1996-2016 
     J.F Kurose and K.W. Ross, All Rights Reserved 



Chapter Goal and Overview  

our goals:  
• understand principles behind transport layer services: 

 Multiplexing and demultiplexing 

 reliable data transfer 

 flow control 

 congestion control 

• learn about Internet transport layer protocols: 
 UDP: connectionless transport 

 TCP: connection-oriented reliable transport 

 TCP congestion control 



Roadmap  

3.1 transport-layer services 

3.2 multiplexing and demultiplexing 

3.3 connectionless transport: UDP 

3.4 principles of reliable data transfer 

3.5 connection-oriented transport: TCP 
 segment structure 
 reliable data transfer 
 flow control 
 connection management 

3.6 principles of congestion control 

3.7 TCP congestion control 



Roadmap – Let starts  

3.1 transport-layer services 

3.2 multiplexing and demultiplexing 

3.3 connectionless transport: UDP 

3.4 principles of reliable data transfer 

3.5 connection-oriented transport: TCP 
 segment structure 
 reliable data transfer 
 flow control 
 connection management 

3.6 principles of congestion control 

3.7 TCP congestion control 



Transport Services and Protocols 

• provide logical 
communication between 
app processes running on 
different hosts 

• transport protocols run in 
end systems  

 send side: breaks app 
messages into segments, 
passes to  network layer 

 rcv side: reassembles 
segments into messages, 
passes to app layer 

• more than one transport 
protocol available to apps 

 Internet: TCP and UDP 

application 
transport 
network 
data link 
physical 

application 
transport 
network 
data link 
physical 



Transport vs. network layer 

• network layer: logical 
communication between 
hosts 

• transport layer: logical 
communication between 
processes  
 relies on, enhances, 

network layer services 

12 kids in Ann’s house 
sending letters to 12 
kids in Bill’s house: 

• hosts = houses 
• processes = kids 
• app messages = letters 

in envelopes 
• transport protocol = 

Ann and Bill who 
demux to in-house 
siblings 

• network-layer protocol 
= postal service 

 

household analogy: 



Internet Transport Layer Protocols 

• reliable, in-order delivery 
(TCP) 

 congestion control  

 flow control 

 connection setup 

• unreliable, unordered 
delivery: UDP 

 no-frills extension of 
“best-effort” IP 

• services not available:  

 delay guarantees 

 bandwidth guarantees 

application 
transport 
network 
data link 
physical 

application 
transport 
network 
data link 
physical 

 
network 
data link 
physical  

network 
data link 
physical 

 
network 
data link 
physical 

 
network 
data link 
physical  

network 
data link 
physical  

network 
data link 
physical 

 
network 
data link 
physical 



Roadmap 

3.1 transport-layer services 

3.2 multiplexing and demultiplexing 

3.3 connectionless transport: UDP 

3.4 principles of reliable data transfer 

3.5 connection-oriented transport: TCP 
 segment structure 
 reliable data transfer 
 flow control 
 connection management 

3.6 principles of congestion control 

3.7 TCP congestion control 



Multiplexing and Demultiplixing  

process 

socket 

use header info to deliver 
received segments to correct  
socket 

demultiplexing at receiver: 
handle data from multiple 
sockets, add transport header 
(later used for demultiplexing) 

multiplexing at sender: 

transport 

application 

physical 

link 

network 

P2 P1 

transport 

application 

physical 

link 

network 

P4 

transport 

application 

physical 

link 

network 

P3 



How Demultiplexing Works 

• host receives IP datagrams 

 each datagram has source 
IP address, destination IP 
address 

 each datagram carries one 
transport-layer segment 

 each segment has source, 
destination port number  

• host uses IP addresses & 
port numbers to direct 
segment to appropriate 
socket 

source port # dest port # 

32 bits 

application 
data  

(payload) 

other header fields 

TCP/UDP segment format 



Connectionless Demultiplexing 

• recall: created socket has host-
local port #: 
DatagramSocket mySocket1        
= new DatagramSocket(12534); 

 

• when host receives UDP 
segment: 
 checks destination port # 

in segment 

 directs UDP segment to 
socket with that port # 

• recall: when creating 
datagram to send into 
UDP socket, must 
specify 
 destination IP address 

 destination port # 

IP datagrams with same 
dest. port #, but different 
source IP addresses 
and/or source port 
numbers will be directed 
to same socket at dest 



Connectionless Demux: Example 

DatagramSocket 
serverSocket = new 
DatagramSocket 

 (6428); 

 

transport 

application 

physical 

link 

network 

P3 
transport 

application 

physical 

link 

network 

P1 

transport 

application 

physical 

link 

network 

P4 

DatagramSocket 
mySocket1 = new 
DatagramSocket 
(5775); 

 

DatagramSocket 
mySocket2 = new 
DatagramSocket 

 (9157); 

 

source port: 9157 
dest port: 6428 

source port: 6428 
dest port: 9157 

source port: ? 
dest port: ? 

source port: ? 
dest port: ? 



Connection-Oriented Demux 

• TCP socket identified by 
4-tuple:  
 source IP address 

 source port number 

 dest IP address 

 dest port number 

• demux: receiver uses all 
four values to direct 
segment to appropriate 
socket 

 

• server host may support 
many simultaneous TCP 
sockets: 
 each socket identified by its 

own 4-tuple 

• web servers have 
different sockets for each 
connecting client 
 non-persistent HTTP will 

have different socket for 
each request 

 



Connection-Oriented Demux: Example 1  

transport 

application 

physical 

link 

network 

P3 
transport 

application 

physical 

link 

P4 

transport 

application 

physical 

link 

network 

P2 

source IP,port: A,9157 
dest IP, port: B,80 

source IP,port: B,80 
dest IP,port: A,9157 

host: IP 
address A 

host: IP 
address C 

network 

P6 P5 
P3 

source IP,port: C,5775 
dest IP,port: B,80 

source IP,port: C,9157 
dest IP,port: B,80 three segments, all destined to IP address: B, 

 dest port: 80 are demultiplexed to different sockets 

server: IP 
address B 



Connection-Oriented Demux: Example 2 

transport 

application 

physical 

link 

network 

P3 
transport 

application 

physical 

link 

transport 

application 

physical 

link 

network 

P2 

source IP,port: A,9157 
dest IP, port: B,80 

source IP,port: B,80 
dest IP,port: A,9157 

host: IP 
address A 

host: IP 
address C 

server: IP 
address B 

network 

P3 

source IP,port: C,5775 
dest IP,port: B,80 

source IP,port: C,9157 
dest IP,port: B,80 

P4 

threaded server 



Roadmap 

3.1 transport-layer services 

3.2 multiplexing and demultiplexing 

3.3 connectionless transport: UDP 

3.4 principles of reliable data transfer 

3.5 connection-oriented transport: TCP 
 segment structure 
 reliable data transfer 
 flow control 
 connection management 

3.6 principles of congestion control 

3.7 TCP congestion control 



UDP: User Datagram Protocol [RFC 768] 

• “no frills,” “bare bones” 
Internet transport protocol 

• “best effort” service, UDP 
segments may be: 

 lost 

 delivered out-of-order to 
app 

• connectionless: 

 no handshaking between 
UDP sender, receiver 

 each UDP segment handled 
independently of others 

• UDP use: 

 streaming multimedia 
apps (loss tolerant, rate 
sensitive) 

 DNS 

 SNMP 

• reliable transfer over UDP:  

 add reliability at 
application layer 

 application-specific error 
recovery! 



UDP: Segment Header 

source port # dest port # 

32 bits 

application 
data  

(payload) 

UDP segment format 

length checksum 

length, in bytes of 
UDP segment, 

including header 

 no connection 
establishment (which can 
add delay) 

 simple: no connection 
state at sender, receiver 

 small header size 

 no congestion control: 
UDP can blast away as 
fast as desired 

why is there a UDP? 



UDP Checksum 

Goal: detect “errors” (e.g., flipped bits) in transmitted 
segment 

 sender: 
• treat segment contents, 

including header fields,  
as sequence of 16-bit 
integers 

• checksum: addition 
(one’s complement 
sum) of segment 
contents 

• sender puts checksum 
value into UDP 
checksum field 

 

 

receiver: 
• compute checksum of 

received segment 

• check if computed 
checksum equals checksum 
field value: 

 NO - error detected 

 YES - no error detected. 
But maybe errors 
nonetheless? More later 
…. 

 



Internet Checksum: Example 

example: add two 16-bit integers 

1  1  1  1  0  0  1  1  0  0  1  1  0  0  1  1  0 
1  1  1  0  1  0  1  0  1  0  1  0  1  0  1  0  1 
 
1  1  0  1  1  1  0  1  1  1  0  1  1  1  0  1  1 
 
1  1  0  1  1  1  0  1  1  1  0  1  1  1  1  0  0 
1  0  1  0  0  0  1  0  0  0  1  0  0  0  0  1  1 

wraparound 

sum 

checksum 

Note: when adding numbers, a carryout from the most 
significant bit needs to be added to the result 

 



Questions? 


