- A
x"ﬁ"j?’-’\'};

THE UNIVERSITY OF WINNIPEG

3

ACS-3911-050 Computer Network

Chapter 3
Transport Layer

PSS COVEE RS ACHWENIEP: BELONG



@5) THE UNIVERSITY OF

ACS-3911-050 — Slides Used In The Course Mﬁ INNIPEG

A note on the use of these PowerPoint slides:

We're making these slides freely available to all (faculty,
students, readers). They’re in PowerPoint form so you see
the animations; and can add, modify, and delete slides
(including this one) and slide content to suit your needs.

They obviously represent a lot of work on our part. In
. A TOP-DOWN APPROACH
return for use, we only ask the following:

* If you use these slides (e.g., in a class) that you mention
their source (after all, we’'d like people to use our
book!)

« If you post any slides on a www site, that you note that |
they are adapted from (or perhaps identical to) our
slides, and note our copyright of this material.

KUROSE ¢ ROSS

Thanks and enjoy! JFK/KWR

All material copyright 1996-2016
J.F Kurose and K.W. Ross, All Rights Reserved

DISCOVER - ACHIEVE - BELONG



o
B | THE UNIVERSITY OF

Chapter Goal and Overview % WINNIPEG

our goals:

understand principles behind transport layer services:
= Multiplexing and demultiplexing

= reliable data transfer

= flow control

= congestion control

learn about Internet transport layer protocols:
= UDP: connectionless transport
= TCP: connection-oriented reliable transport
= TCP congestion control

DISCOVER - ACHIEVE - BELONG



# | THE UNIVERSITY OF

WINNIPEG

Roadmap

3.1 transport-layer services
3.2 multiplexing and demultiplexing
3.3 connectionless transport: UDP
3.4 principles of reliable data transfer
3.5 connection-oriented transport: TCP

= segment structure

= reliable data transfer

= flow control

= connection management
3.6 principles of congestion control
3.7 TCP congestion control

DISCOVER - ACHIEVE - BELONG



B0 | THE UNIVERSITY OF

Roadmap — Let starts %, WINNIPEG

3.1 transport-layer services

DISCOVER - ACHIEVE - BELONG



2%, | THE UNIVERSITY OF

Transport Services and Protocols g@ WINNIPEG

- provide logical
communication between s
app processes running on
different hosts

- transport protocols run in
end systems

= send side: breaks app
messages into segments,
passes to network layer

= rcv side: reassembles
segments into messages,
passes to app layer

- more than one transport
protocol available to apps

= |[nternet: TCP and UDP

DISCOVER - ACHIEVE - BELONG




j THE UNIVERSITY OF

Transport vs. network layer % WINNIPEG
* network layer: logical - household analogy:

communication between | 12 kids in Ann s house

hosts sending letters to 12
* transport layer: logical kids in Bill"s house:

communication between | ¢ hosts = houses

processes * processes = kids

= relies on, enhances, * app messages = letters

network layer services in envelopes

e transport protocol =
Ann and Bill who
demux to in-house
siblings

* network-layer protocol
= postal service

DISCOVER - ACHIEVE - BELONG




( B | THE UNIVERSITY OF

Internet Transport Layer Protocols %, WINNIPEG
- reliable, in-order delivery —

(TCP) i e

" congestion control =7 oy -

= flow control ghéwllk ’ :jatvzilcig'k =

= connection setup ph‘,k‘ -

- unreliable, unordered — g e K
delivery: UDP e [wa ]
y. . = ‘,netwqu <
" no-frills extension of data lnk
13 ” network
b c St' effO I"t I P q data _Iin:< a ation
. . ‘ Py Ihetwork anspo
- services not available: P - cata lnk_J/ Jrebvore
Q/ - . |physical ohysical
= delay guarantees = . —
e S o 5o ( g ;

" bandwidth guarantees

DISCOVER - ACHIEVE - BELONG



B0 | THE UNIVERSITY OF

Roadmap %, WINNIPEG

3.2 multiplexing and demultiplexing

DISCOVER - ACHIEVE - BELONG



', | THE UNIVERSITY OF

Multiplexing and Demultiplixing L, WINNIPEG

- multiplexing at sender:

handle data from multiple B demultlple.)(l]?g at receiver: —
sockets, add transport header use header info to deliver
(later used for demultiplexing) received segments to correct
socket
application

application application socket

Qprocess

tranfport netwark tranjgport

netWork Ik netMork

ik PPY$ial Ik |
phyHical physical
g

DISCOVER - ACHIEVE - BELONG



THE UNIVERSITY OF

WINNIPEG

How Demultiplexing Works

host receives IP datagrams

32 bits
= each datagram has source
IP address, destination IP source port # | dest port #
address

= each datagram carries one other header fields

transport-layer segment

x each. segment has source, application
destination port number data
host uses IP addresses & (payload)

port numbers to direct
segment to appropriate
socket

DISCOVER - ACHIEVE - BELONG

TCP/UDP segment format



THE UNIVERSITY OF

Connectionless Demultiplexing QJWINNIPEG

- recall: created socket has host- - recall: when creating

local port #: datagram to send into
DatagramSocket mySocketl UDP Socket, must
= new DatagramSocket (12534) ; specify

" destination IP address
" destination port #

when host receives UDP IP datagrams with same
segment: dest. port #, but different
* checks destination port # mmm) sog}*ce IP addressets
in segment and/or source por

numbers will be directed

= directs UDP segment to to same socket at dest
socket with that port #

DISCOVER - ACHIEVE - BELONG



LY | THE UNIVERSITY OF

[ ] \
Connectionless Demux: Example %, WINNIPEG
DatagramSocket
DatagramSocket serverSocket = new DatagramSocket

mySocket2 = new DatagramSocket mySocketl = new
DatagramSocket (6428) ; DatagramSocket
(9157) ; application (5775).

application @ application

m|44]m

T4 I tramsport .

tramgport neivv|0'k trangport

nefwork Ijn'< netwprk

link phisical link
physgical |

source port: 6428 source port: ?
. dest port: 9157 ] dest port: ?
> < v
source port: 9157 source port: ?
dest port: 6428 dest port: ?

DISCOVER - ACHIEVE - BELONG



', | THE UNIVERSITY OF
\

Connection-Oriented Demux %, WINNIPEG

TCP socket identified by - server host may support

4-tuple: many simultaneous TCP

= source IP address sockets:

" source port number " each socket identified by its

= dest IP address own 4-tuple

= dest port number . web servers have
demux: receiver uses all different sockets for each
four values to direct connecting client
segment to appropriate " non-persistent HT TP will
socket have different socket for

each request

DISCOVER - ACHIEVE - BELONG



LY | THE UNIVERSITY OF

Connection-Oriented Demux: Example 1 %, WINNIPEG

application

application application
Nlpy Ry
m 4 Im “yangport —I-I_T_|- e
tran|5port Hetwlork transpor%
netyvork lidk network
lihk bhydical link
phygical server: I[P physical &
address B o
host: IP source IP,port: B,80 « host: IP
address A dest IP,port: A,9157 source 1P,port: C,5775 address C
S dest IP,port: B,80
source IP,port: A,9157 -
dest IP, port: B,80_

source IP,port: C,9157

three segments, all destined to IP address: B, dest IP,port: B,80

dest port: 80 are demultiplexed to different sockets

DISCOVER - ACHIEVE - BELONG



o
B | THE UNIVERSITY OF

Connection-Oriented Demux: Example 2 %, WINNIPEG

threaded server

application
application application
IIIII
tranppo b
netivork . - network
.
link = i link
q phykical _I server: [P physical D
e — address B i
host: IP source IP,port: B,80 «+ host: IP
address A dest IP,port: A,9157 — source IP,port: C,5775 address C
- dest IP,port: B,80
source IP,port: A,9157 -
dest IP, port: B,80

“source IP,port: C,9157
dest IP,port: B,80

DISCOVER - ACHIEVE - BELONG



B0 | THE UNIVERSITY OF

Roadmap %, WINNIPEG

3.3 connectionless transport: UDP

DISCOVER - ACHIEVE - BELONG



', | THE UNIVERSITY OF

UDP: User Datagram Protocol [RFC 768] %, WINNIPEG
“no frills,” “bare bones” . UDP use:
Internet transport protocol = streaming multimedia
“best effort” service, UDP apps (loss tolerant, rate
segments may be: sensitive)
" |ost = DNS
" delivered out-of-order to = SNMP
app - reliable transfer over UDP:
connectionless: = add reliability at
" no handshaking between application layer
UDP sender, receiver = application-specific error
= each UDP segment handled recovery!

independently of others

DISCOVER - ACHIEVE - BELONG



' | THE UNIVERSITY OF

UDP: Segment Header X; WINNIPEG

length, in bytes of
UDP segment,
including header

_ why is there a UDP? __

no connection
establishment (which can

32 bits

source port #
length <~ | checksum

application add delay)
data « simple: no connection
(payload) state at sender, receiver

» small header size

» no congestion control:
UDP can blast away as
fast as desired

DISCOVER - ACHIEVE - BELONG

UDP segment format




THE UNIVERSITY OF

WINNIPEG

UDP Checksum

Goal: detect “errors” (e.g., flipped bits) in transmitted

segment

sender: receiver:
treat segment contents, . compute checksum of
including header fields, received segment
as sequence of | 6-bit check if computed
integers P

heck Is check
checksum: addition Eeledcvzllﬂre];equas checksum

(one’ s complement

sum) of segment * NO - error detected

contents = YES - no error detected.
sender puts checksum But maybe errors
value into UDP nonetheless? More later

checksum field

DISCOVER - ACHIEVE - BELONG



2%, | THE UNIVERSITY OF

Internet Checksum: Example &, WINNIPEG

example: add two 16-bit integers

111 0011001100110
110101010101 0101

wraparound@lOl1101110111011

sum

1011101110111 100
checksum 0100010001 O0O0O0OO0T11

Note: when adding numbers, a carryout from the most
significant bit needs to be added to the result

DISCOVER - ACHIEVE - BELONG



BY, | THE UNIVERSITY OF

WINNIPEG

Questions?

-

QUESTIONS

-

DISCOVER - ACHIEVE - BELONG



