- A
x"ﬁ"j?’-’\'};

THE UNIVERSITY OF WINNIPEG

3

ACS-3911-050 Computer Network

Chapter 3
Transport Layer

PI'S COVEERs. ACHWENIEP: BELONG

@5) THE UNIVERSITY OF

ACS-3911-050 — Slides Used In The Course Mﬁ INNIPEG

A note on the use of these PowerPoint slides:

We’re making these slides freely available to all (faculty,
students, readers). They’re in PowerPoint form so you see
the animations; and can add, modify, and delete slides
(including this one) and slide content to suit your needs.

They obviously represent a lot of work on our part. In
. A TOP-DOWN APPROACH
return for use, we only ask the following:

* If you use these slides (e.g., in a class) that you mention
their source (after all, we’'d like people to use our
book!)

« If you post any slides on a www site, that you note that |
they are adapted from (or perhaps identical to) our
slides, and note our copyright of this material.

KUROSE ¢ ROSS

Thanks and enjoy! JFK/KWR

All material copyright 1996-2016
J.F Kurose and K.W. Ross, All Rights Reserved

DISCOVER - ACHIEVE - BELONG

B0 | THE UNIVERSITY OF

Roadmap L2, WINNIPEG

3.4 principles of reliable data transfer

DISCOVER - ACHIEVE - BELONG

o
B | THE UNIVERSITY OF

Principle of Reliable Data Transfer %, WINNIPEG

important in application, transport, link layers
= top-10 list of important networking topics!

sending |receiver I
DroCess process
1

L()reliclble c:hf::mhel)j

application
layer

fransport
layer

(a) provided service

characteristics of unreliable channel will determine
complexity of reliable data transfer protocol (rdt)

DISCOVER - ACHIEVE - BELONG

o
B | THE UNIVERSITY OF

Principle of Reliable Data Transfer %, WINNIPEG

important in application, transport, link layers
" top-10 list of important networking topics!

sending receiver
Orocess process

1
reliable chcnrmel)j

application
layer

fransport
layer

¥
Junreliable Chonnel)i

(a) provided service (b) service implementation

characteristics of unreliable channel will determine
complexity of reliable data transfer protocol (rdt)

DISCOVER - ACHIEVE - BELONG

(B | THE UNIVERSITY OF

Principle of Reliable Data Transfer %, WINNIPEG

<+ important in application, transport, link layers
" top-10 list of important networking topics!

send |ng receiver
rocess process
1

dt d
reliable chcnrmel)j rdt_send()

application
layer

deliver data()

=

8_ 5 reliable data reliable data

B > transfer protocol transfer protocol
% O (sending side) (receiving side)

udt send()i [packet | [packet] Irdt rev ()

Junreliable Chonnel)i

(a) provided service (b) service implementation

< characteristics of unreliable channel will determine
complexity of reliable data transfer protocol (rdt)

DISCOVER - ACHIEVE - BELONG

rdt send () : called from above,

(e.g., by app.). Passed data to
deliver to receiver upper layer

rdt_ send()

reliable data
fransfer protocol
(sending side)

send
side

o
LY | THE UNIVERSITY OF

Reliable Data Transfer: Getting Started {%; WINNIPEG

deliver data () : called by
rdt to deliver data to upper

_/

data Tdeliver_data ()

reliable data receive
transfer protocol :
(receiving side) side

udt_send ()} [pockel

packet Irdt_rcv ()

T—»()unrelicible channel)J

udt send () : called by rdt,
to transfer packet over
unreliable channel to receiver

rdt rcv () : called when packet
arrives on rcv-side of channel

DISCOVER - ACHIEVE - BELONG

o
LY | THE UNIVERSITY OF

Reliable Data Transfer: Getting Started {%; WINNIPEG

’
we |l:
incrementally develop sender, receiver sides of reliable data

transfer protocol (rdt)
consider only unidirectional data transfer

* but control info will flow on both directions!
use finite state machines (FSM) to specify sender, receiver

event causing state transition
actions taken on state transition

5

DISCOVER - ACHIEVE - BELONG

state: when in this
“state” next state
uniquely determined
by next event

o
LY | THE UNIVERSITY OF

RDT 1.0: Reliable Transfer Over a Reliable Channel gﬁ WINNIPEG

- underlying channel perfectly reliable

" no bit errors
" no loss of packets

. separate FSMs for sender, receiver:
= sender sends data into underlying channel
= receiver reads data from underlying channel

rdt_send(data)

Wait for
call from
above

udt_send(packet)

sender

“Y\Wait for

packet = make pkt(data)

rdt_rcv(packet)

extract (packet,data)
deliver_data(data)

call from
below

receiver

DISCOVER - ACHIEVE - BELONG

RDT 2.0: Channel With Bit Errors {VIEIEIUIETWNE?SEE%E

underlying channel may flip bits in packet
= checksum to detect bit errors

the question: how to recover from errors:

»

ow do humans recover from “errors
during conversation?

DISCOVER - ACHIEVE - BELONG

'3, | THE UNIVERSITY OF

RDT 2.0: Channel With Bit Errors X, WINNIPEG

underlying channel may flip bits in packet
= checksum to detect bit errors

the question: how to recover from errors:

= gcknowledgements (ACKs): receiver explicitly tells sender that
packet received OK

" negative acknowledgements (NAKs): receiver explicitly tells
sender that packet had errors

= sender retransmits packet on receipt of NAK

new mechanisms in rdt2.0 (beyond rdt1.0):

= error detection

= receiver feedback: control messages (ACK,NAK) receiver-
>sender

DISCOVER - ACHIEVE - BELONG

o

BL) | THE UNTVERSITY OF

Qﬁ WINNIPEG

RDT 2.0: FSM Specification

receiver
rdt_send(data)

sndpkt = make_pkt(data, checksum)
udt_send(sndpkt)

rdt_rcv(rcvpkt) &&
rdt_rcv(rcvpkt) && corrupt(revpk)

~sNAK(revpki) udt_send(NAK)
udt_send(sndpkt)

Walit for
call from
above

Wait for

rdt_rcv(rcvpkt) && isACK(rcvpkt) Ci'éfgf,)\,m
A

-y,
sender

rdt_rcv(rcvpkt) &&
notcorrupt(rcvpkt)

extract(rcvpkt,data)
deliver_data(data)
udt_send(ACK)

DISCOVER - ACHIEVE - BELONG

o
B | THE UNIVERSITY OF

RDT 2.0: Operation With No Errors X, WINNIPEG

rdt_send(data)

snkpkt = make_pkt(data, checksum)
udt_send(sndpkt

——

rdt_rcv(rcvpkt) &&

WWait for iISNAK(rcvpkt)

call from
above

rdt_rcv(rcvpkt) &&
udt send(sndpkt) corrupt(rcvpkt)

udt_send(NAK)

. C

Wait for
call from
below

rdt_rcv(rcvpkt) && isACK(rcvpkt)
=
A

rdt rcv(rcvka &&
notcorrupt(rcvpkt)

extract(rcvpkt,data)
deliver_data(data)
udt_send(ACK)

DISCOVER - ACHIEVE - BELONG

o
B | THE UNIVERSITY OF

Qﬁ WINNIPEG

RDT 2.0: Error Scenario

rdt_send(data)

snkpkt = make_pkt(data, checksum)
udt send(sndpkt)

dt rcv(rcvpkt) &&
ISNA S

£

rdt_rcv(rcvpkt) &&
corrupt(rcvpkt)

dt send(NAK

call from
above

udt_send(sndpkt)

rdt_rcv(rcvpkt) && isACK(rcvpkt)
<
A

rdt_rcv(rcvpkt) &&
notcorrupt(rcvpkt)

extract(rcvpkt,data)
deliver_data(data)
udt_send(ACK)

DISCOVER - ACHIEVE - BELONG

‘2%, | THE UNIVERSITY OF

RDT 2.0 has a Fatal Flaw! 22, WINNIPEG

what happens if handling duplicates:
ACK/NAK corrupted!? . sender retransmits current
sender doesn’t know packet if ACK/NAK
what happened at corrupted
receiver! - sender adds sequence number
Can’t just retransmit: to each packet
possible duplicate . receiver discards (doesn’t

deliver up) duplicate packet

— stop and wait
sender sends one packet,

then waits for receiver
response

DISCOVER - ACHIEVE - BELONG

(B | THE UNIVERSITY OF

RDT 2.1: Sender, Handles Garbled ACK/NAKs (% WINNIPEG

rdt_send(data)

sndpkt = make_pkt(0, data, checksum)
udt_send(sndpkt)

rdt_rcv(rcvpkt) &&
(corrupt(rcvpkt) ||
ISNAK(rcvpkt))

udt_send(sndpkt)

VVaHfof“l’
ACK or

NAK O

Wait for
call O fro
above

rdt_rcv(rcvpkt)
&& notcorrupt(rcvpkt)
&& iISACK(rcvpkt)

rdt_rcv(rcvpkt)
&& notcorrupt(rcvpkt)
&& iISACK(rcvpkt)

A A
rdt_rcv(rcvpkt) &&
(corrupt(rcvpkt) ||
isSNAK(rcvpkt)) rdt_send(data)
udt_send(sndpkt) sndpkt = make_pkt(1, data, checksum)

udt_send(sndpkt)

DISCOVER - ACHIEVE - BELONG

(B | THE UNIVERSITY OF

RDT 2.1: Receiver, Handles Garbled ACK/NAKs gﬁ WINNIPEG

rdt_rcv(rcvpkt) && notcorrupt(rcvpkt)
&& has_seqO(rcvpkt)

extract(rcvpkt,data)
deliver_data(data)

sndpkt = make_pkt(ACK, chksum)
udt_send(sndpkt)

\
\

rdt_rcv(rcvpkt) && (corrupt(rcvpkt) \\

rdt_rcv(rcvpkt) && (corrupt(rcvpkt)

sndpkt = make_pkt(NAK, chksum) \

udt_send(sndpkt) Q

rdt_rcv(rcvpkt) &&
not corrupt(rcvpkt) && <
has_seql(rcvpkt)

sndpkt = make_pkt(ACK, chksum)

udt_send(sndpkt)

rdt_rcv(rcvpkt) &&
not corrupt(rcvpkt) &&
has seqO(rcvpkt)

sndpkt = make_pkt(ACK, chksum)
udt_send(sndpkt)

rdt_rcv(rcvpkt) && notcorrupt(rcvpkt)
&& has_seql(rcvpkt)

extract(rcvpkt,data)
deliver_data(data)

sndpkt = make_pkt(ACK, chksum)
udt_send(sndpkt)

DISCOVER - ACHIEVE - BELONG

23 | THE UNIVERSITY OF

RDT 2.1: Discussion 22, WINNIPEG

sender: receiver:
seq # added to pkt - must check if received
two seq. # s (0,1) will packet is duplicate
suffice. Why? " state indicates whether
: : 0 or | is expected pkt

must check if received seq #
ACK/NAK corrupted :

. - note: receiver can not
twice as many states know if its last

" state must ACK/NAK received
remember whether OK at sender

“expected’ pkt should
have seq # of 0 or |

DISCOVER - ACHIEVE - BELONG

B | THE UNIVERSITY OF

WINNIPEG

Questions?

-

QUESTIONS

-

DISCOVER - ACHIEVE - BELONG

