
ACS-3911-050 Computer Network

Chapter 3
Transport Layer

ACS-3911-050 – Slides Used In The Course

A note on the use of these PowerPoint slides:

We’re making these slides freely available to all (faculty,
students, readers). They’re in PowerPoint form so you see
the animations; and can add, modify, and delete slides
(including this one) and slide content to suit your needs.
They obviously represent a lot of work on our part. In
return for use, we only ask the following:

• If you use these slides (e.g., in a class) that you mention
their source (after all, we’d like people to use our
book!)

• If you post any slides on a www site, that you note that
they are adapted from (or perhaps identical to) our
slides, and note our copyright of this material.

Thanks and enjoy! JFK/KWR

All material copyright 1996-2016
J.F Kurose and K.W. Ross, All Rights Reserved

RDT 2.2: A NAK-free Protocol

• same functionality as rdt2.1, using ACKs only

• instead of NAK, receiver sends ACK for last pkt
received OK

▪ receiver must explicitly include seq # of pkt being
ACKed

• duplicate ACK at sender results in same action as NAK:
retransmit current pkt

RDT 2.2: Sender, Receiver Fragments

Wait for

call 0 from

above

sndpkt = make_pkt(0, data, checksum)

udt_send(sndpkt)

rdt_send(data)

udt_send(sndpkt)

rdt_rcv(rcvpkt) &&

(corrupt(rcvpkt) ||

isACK(rcvpkt,1))

rdt_rcv(rcvpkt)

&& notcorrupt(rcvpkt)

&& isACK(rcvpkt,0)

Wait for

ACK

0

sender FSM
fragment

rdt_rcv(rcvpkt) && notcorrupt(rcvpkt)

&& has_seq1(rcvpkt)

extract(rcvpkt,data)

deliver_data(data)

sndpkt = make_pkt(ACK1, chksum)

udt_send(sndpkt)

Wait for

0 from

below

rdt_rcv(rcvpkt) &&

(corrupt(rcvpkt) ||

has_seq1(rcvpkt))

udt_send(sndpkt)

receiver FSM
fragment

L

RDT 3.0: Channels with Errors and Loss

new assumption:
underlying channel can

also lose packets (data,

ACKs)

▪ checksum, seq. #,

ACKs, retransmissions

will be of help … but

not enough

approach: sender waits

“reasonable” amount of

time for ACK

• retransmits if no ACK

received in this time

• if pkt (or ACK) just delayed

(not lost):

▪ retransmission will be

duplicate, but seq. #’s

already handles this

▪ receiver must specify seq

of pkt being ACKed

• requires countdown timer

RDT 3.0 Sender

sndpkt = make_pkt(0, data, checksum)

udt_send(sndpkt)

start_timer

rdt_send(data)

Wait

for

ACK0

rdt_rcv(rcvpkt) &&

(corrupt(rcvpkt) ||

isACK(rcvpkt,1))

Wait for

call 1 from

above

sndpkt = make_pkt(1, data, checksum)

udt_send(sndpkt)

start_timer

rdt_send(data)

rdt_rcv(rcvpkt)

&& notcorrupt(rcvpkt)

&& isACK(rcvpkt,0)

rdt_rcv(rcvpkt) &&

(corrupt(rcvpkt) ||

isACK(rcvpkt,0))

rdt_rcv(rcvpkt)

&& notcorrupt(rcvpkt)

&& isACK(rcvpkt,1)

stop_timer

stop_timer

udt_send(sndpkt)

start_timer

timeout

udt_send(sndpkt)

start_timer

timeout

rdt_rcv(rcvpkt)

Wait for

call 0from

above

Wait

for

ACK1

L

rdt_rcv(rcvpkt)

L

L

L

RDT 3.0 In Action

sender receiver

rcv pkt1

rcv pkt0

send ack0

send ack1

send ack0

rcv ack0

send pkt0

send pkt1

rcv ack1

send pkt0

rcv pkt0
pkt0

pkt0

pkt1

ack1

ack0

ack0

(a) no loss

sender receiver

rcv pkt1

rcv pkt0

send ack0

send ack1

send ack0

rcv ack0

send pkt0

send pkt1

rcv ack1

send pkt0

rcv pkt0
pkt0

pkt0

ack1

ack0

ack0

(b) packet loss

pkt1
X

loss

pkt1
timeout

resend pkt1

RDT 3.0 In Action

rcv pkt1
send ack1

(detect duplicate)

pkt1

sender receiver

rcv pkt1

rcv pkt0

send ack0

send ack1

send ack0

rcv ack0

send pkt0

send pkt1

rcv ack1

send pkt0

rcv pkt0
pkt0

pkt0

ack1

ack0

ack0

(c) ACK loss

ack1
X

loss

pkt1

rcv pkt1
send ack1

(detect duplicate)

pkt1

sender receiver

rcv pkt1

send ack0
rcv ack0

send pkt1

send pkt0

rcv pkt0
pkt0

ack0

(d) premature timeout/ delayed ACK

pkt1
timeout

resend pkt1

ack1

send ack1

send pkt0
rcv ack1

pkt0

ack1

ack0

send pkt0
rcv ack1 pkt0

rcv pkt0
send ack0ack0

rcv pkt0

send ack0
(detect duplicate)

timeout
resend pkt1

Performance of RDT 3.0

• rdt3.0 is correct, but performance stinks

• e.g.: 1 Gbps link, 15 ms prop. delay, 8000 bit packet:

▪ U sender: utilization – fraction of time sender busy sending

U
sender =

.008

30.008
= 0.00027

L / R

RTT + L / R
=

▪ if RTT=30 msec, 1KB pkt every 30 msec: 33kB/sec thruput
over 1 Gbps link

• network protocol limits use of physical resources!

Dtrans =
L
R

8000 bits

109 bits/sec
= = 8 microsecs

RDT 3.0: Stop-and-Wait Operation

first packet bit transmitted, t = 0

sender receiver

RTT

last packet bit transmitted, t = L / R

first packet bit arrives

last packet bit arrives, send ACK

ACK arrives, send next

packet, t = RTT + L / R

U
sender =

.008

30.008
= 0.00027

L / R

RTT + L / R
=

Pipelined Protocols

pipelining: sender allows multiple, “in-flight”, yet-to-be-
acknowledged pkts
▪ range of sequence numbers must be increased

▪ buffering at sender and/or receiver

• two generic forms of pipelined protocols: go-Back-N,
selective repeat

Pipelining: Increased Utilization

first packet bit transmitted, t = 0

sender receiver

RTT

last bit transmitted, t = L / R

first packet bit arrives

last packet bit arrives, send ACK

ACK arrives, send next

packet, t = RTT + L / R

last bit of 2nd packet arrives, send ACK
last bit of 3rd packet arrives, send ACK

3-packet pipelining increases

utilization by a factor of 3!

U
sender =

.0024

30.008
= 0.00081

3L / R

RTT + L / R
=

Pipelined Protocols: Overview

Go-back-N:
• sender can have up to

N unacked packets in
pipeline

• receiver only sends
cumulative ack

▪ doesn’t ack packet if
there’s a gap

• sender has timer for
oldest unacked packet

▪when timer expires,
retransmit all
unacked packets

Selective Repeat:
• sender can have up to N

unack’ed packets in
pipeline

• rcvr sends individual ack
for each packet

• sender maintains timer
for each unacked packet

▪when timer expires,
retransmit only that
unacked packet

Go-Back-N: Sender

• k-bit seq # in packet header

• “window” of up to N, consecutive unack’ed pkts allowed

• ACK(n): ACKs all pkts up to, including seq # n - “cumulative
ACK”
▪ may receive duplicate ACKs (see receiver)

• timer for oldest in-flight packet

• timeout(n): retransmit packet n and all higher seq # packets in
window

GBN: Sender Extended FSM

Wait
start_timer

udt_send(sndpkt[base])

udt_send(sndpkt[base+1])

…

udt_send(sndpkt[nextseqnum-1])

timeout

rdt_send(data)

if (nextseqnum < base+N) {

sndpkt[nextseqnum] = make_pkt(nextseqnum,data,chksum)

udt_send(sndpkt[nextseqnum])

if (base == nextseqnum)

start_timer

nextseqnum++

}

else

refuse_data(data)

base = getacknum(rcvpkt)+1

If (base == nextseqnum)

stop_timer

else

start_timer

rdt_rcv(rcvpkt) &&

notcorrupt(rcvpkt)

base=1

nextseqnum=1

rdt_rcv(rcvpkt)

&& corrupt(rcvpkt)

L

GBN: Receiver Extended FSM

Wait

udt_send(sndpkt)

default

rdt_rcv(rcvpkt)

&& notcurrupt(rcvpkt)

&& hasseqnum(rcvpkt,expectedseqnum)

extract(rcvpkt,data)

deliver_data(data)

sndpkt = make_pkt(expectedseqnum,ACK,chksum)

udt_send(sndpkt)

expectedseqnum++

expectedseqnum=1

sndpkt =

make_pkt(expectedseqnum,ACK,chksum)

L

ACK-only: always send ACK for correctly-received pkt with highest in-order
seq #

▪ may generate duplicate ACKs

▪ need only remember expectedseqnum

• out-of-order pkt:

▪ discard (don’t buffer): no receiver buffering!

▪ re-ACK pkt with highest in-order seq #

GBN in Action

send pkt0
send pkt1
send pkt2
send pkt3

(wait)

sender receiver

receive pkt0, send ack0
receive pkt1, send ack1

receive pkt3, discard,
(re)send ack1rcv ack0, send pkt4

rcv ack1, send pkt5

pkt 2 timeout
send pkt2
send pkt3
send pkt4
send pkt5

Xloss

receive pkt4, discard,
(re)send ack1

receive pkt5, discard,
(re)send ack1

rcv pkt2, deliver, send ack2
rcv pkt3, deliver, send ack3
rcv pkt4, deliver, send ack4
rcv pkt5, deliver, send ack5

ignore duplicate ACK

0 1 2 3 4 5 6 7 8

sender window (N=4)

0 1 2 3 4 5 6 7 8

0 1 2 3 4 5 6 7 8

0 1 2 3 4 5 6 7 8

0 1 2 3 4 5 6 7 8

0 1 2 3 4 5 6 7 8

0 1 2 3 4 5 6 7 8
0 1 2 3 4 5 6 7 8

0 1 2 3 4 5 6 7 8
0 1 2 3 4 5 6 7 8

Selective Repeat

• receiver individually acknowledges all correctly received

pkts

▪ buffers pkts, as needed, for eventual in-order delivery to

upper layer

• sender only resends pkts for which ACK not received

▪ sender timer for each unACKed pkt

• sender window

▪ N consecutive seq #’s

▪ limits seq #s of sent, unACKed pkts

Selective Repeat: Sender, Receiver Windows

Selective Repeat

data from above:

❖ if next available seq # in
window, send pkt

timeout(n):

❖ resend pkt n, restart
timer

ACK(n) in
[sendbase,sendbase+N]:

❖ mark pkt n as received

❖ if n smallest unACKed
pkt, advance window base
to next unACKed seq #

pkt n in [rcvbase, rcvbase+N-
1]

❖ send ACK(n)

❖ out-of-order: buffer

❖ in-order: deliver (also
deliver buffered, in-order
pkts), advance window to
next not-yet-received pkt

pkt n in [rcvbase-N,rcvbase-
1]

❖ ACK(n)

otherwise:

❖ ignore

receiversender

Selective Repeat in Action

send pkt0
send pkt1
send pkt2
send pkt3

(wait)

sender receiver

receive pkt0, send ack0
receive pkt1, send ack1

receive pkt3, buffer,
send ack3rcv ack0, send pkt4

rcv ack1, send pkt5

pkt 2 timeout
send pkt2

Xloss

receive pkt4, buffer,
send ack4

receive pkt5, buffer,
send ack5

rcv pkt2; deliver pkt2,
pkt3, pkt4, pkt5; send ack2

record ack3 arrived

0 1 2 3 4 5 6 7 8

sender window (N=4)

0 1 2 3 4 5 6 7 8

0 1 2 3 4 5 6 7 8

0 1 2 3 4 5 6 7 8

0 1 2 3 4 5 6 7 8

0 1 2 3 4 5 6 7 8

0 1 2 3 4 5 6 7 8

0 1 2 3 4 5 6 7 8

0 1 2 3 4 5 6 7 8

0 1 2 3 4 5 6 7 8

record ack4 arrived

record ack4 arrived

Q: what happens when ack2 arrives?

Roadmap

3.1 transport-layer services

3.2 multiplexing and demultiplexing

3.3 connectionless transport: UDP

3.4 principles of reliable data transfer

3.5 connection-oriented transport: TCP
▪ segment structure
▪ reliable data transfer
▪ flow control
▪ connection management

3.6 principles of congestion control

3.7 TCP congestion control

TCP: Overview RFCs: 793, 1122, 1323, 2018, 2581

• point-to-point:
▪ one sender, one receiver

• reliable, in-order byte
steam:
▪ no “message boundaries”

• pipelined:
▪ TCP congestion and flow

control set window size

• full duplex data:
▪ bi-directional data flow in

same connection

▪ MSS: maximum segment
size

• connection-oriented:
▪ handshaking (exchange of

control msgs) inits sender,
receiver state before data
exchange

• flow controlled:
▪ sender will not overwhelm

receiver

TCP Segment Structure

source port # dest port #

32 bits

application

data

(variable length)

sequence number

acknowledgement number

receive window

Urg data pointerchecksum

FSRPAU
head

len

not

used

options (variable length)

URG: urgent data

(generally not used)

ACK: ACK #

valid

PSH: push data now

(generally not used)

RST, SYN, FIN:

connection estab

(setup, teardown

commands)

bytes

rcvr willing

to accept

counting

by bytes

of data

(not segments!)

Internet

checksum

(as in UDP)

TCP Seq. Number, ACKs

sequence numbers:

▪byte stream “number” of
first byte in segment’s
data

acknowledgements:

▪seq # of next byte
expected from other side

▪cumulative ACK

Q: how receiver handles
out-of-order segments

▪A: TCP spec doesn’t say,
- up to implementor source port # dest port #

sequence number

acknowledgement number

checksum

rwnd

urg pointer

incoming segment to sender

A

sent
ACKed

sent, not-
yet ACKed
(“in-
flight”)

usable
but not
yet sent

not
usable

window size
N

sender sequence number space

source port # dest port #

sequence number

acknowledgement number

checksum

rwnd

urg pointer

outgoing segment from sender

TCP Seq. Number, ACKs

User
types
‘C’

host ACKs
receipt

of echoed
‘C’

host ACKs
receipt of
‘C’, echoes
back ‘C’

simple telnet scenario

Host BHost A

Seq=42, ACK=79, data = ‘C’

Seq=79, ACK=43, data = ‘C’

Seq=43, ACK=80

TCP Round Trip Time, Timeout

Q: how to set TCP
timeout value?

• longer than RTT

▪ but RTT varies

• too short: premature
timeout, unnecessary
retransmissions

• too long: slow reaction
to segment loss

Q: how to estimate RTT?

• SampleRTT: measured
time from segment
transmission until ACK
receipt

▪ ignore retransmissions

• SampleRTT will vary,
want estimated RTT
“smoother”
▪ average several recent

measurements, not just
current SampleRTT

TCP Round Trip Time, Timeout

EstimatedRTT = (1- )*EstimatedRTT + *SampleRTT

❖ exponential weighted moving average
❖ influence of past sample decreases exponentially fast
❖ typical value:  = 0.125

RTT: gaia.cs.umass.edu to fantasia.eurecom.fr

100

150

200

250

300

350

1 8 15 22 29 36 43 50 57 64 71 78 85 92 99 106

time (seconnds)

R
T

T
 (

m
il

li
se

co
n

d
s)

SampleRTT Estimated RTT

R
T
T
 (

m
ill

is
e
co

n
d
s)

RTT: gaia.cs.umass.edu to fantasia.eurecom.fr

sampleRTT

EstimatedRTT

time (seconds)

TCP Round Trip Time, Timeout

• timeout interval: EstimatedRTT plus “safety margin”
▪ large variation in EstimatedRTT -> larger safety margin

❖ estimate SampleRTT deviation from EstimatedRTT:

DevRTT = (1-)*DevRTT +

*|SampleRTT-EstimatedRTT|

(typically,  = 0.25)

TimeoutInterval = EstimatedRTT + 4*DevRTT

estimated RTT “safety margin”

TCP Reliable Data Transfer

• TCP creates rdt service
on top of IP’s unreliable
service

▪ pipelined segments

▪ cumulative acks

▪ single retransmission
timer

• retransmissions
triggered by:

▪ timeout events

▪ duplicate acks

let’s initially consider
simplified TCP sender:

▪ ignore duplicate acks

▪ ignore flow control,
congestion control

TCP Sender Events:

data rcvd from app:

• create segment with seq
#

• seq # is byte-stream
number of first data byte
in segment

• start timer if not already
running

▪ think of timer as for
oldest unacked
segment

▪ expiration interval:
TimeOutInterval

timeout:

• retransmit segment that
caused timeout

• restart timer

ack rcvd:

• if ack acknowledges
previously unacked
segments

▪ update what is known
to be ACKed

▪ start timer if there are
still unacked segments

TCP Sender (Simplified)

wait

for

event

NextSeqNum = InitialSeqNum

SendBase = InitialSeqNum

L

create segment, seq. #: NextSeqNum

pass segment to IP (i.e., “send”)

NextSeqNum = NextSeqNum + length(data)

if (timer currently not running)

start timer

data received from application above

retransmit not-yet-acked segment
with smallest seq. #

start timer

timeout

if (y > SendBase) {

SendBase = y

/* SendBase–1: last cumulatively ACKed byte */

if (there are currently not-yet-acked segments)

start timer

else stop timer

}

ACK received, with ACK field value y

TCP: Retransmission Scenarios

lost ACK scenario

Host BHost A

Seq=92, 8 bytes of data

ACK=100

Seq=92, 8 bytes of data

Xti
m

e
o
u
t

ACK=100

premature timeout

Host BHost A

Seq=92, 8 bytes of data

ACK=100

Seq=92, 8
bytes of data

ti
m

e
o
u
t

ACK=120

Seq=100, 20 bytes of data

ACK=120

SendBase=100

SendBase=120

SendBase=120

SendBase=92

TCP: Retransmission Scenarios

X

cumulative ACK

Host BHost A

Seq=92, 8 bytes of data

ACK=100

Seq=120, 15 bytes of data

ti
m

e
o
u
t

Seq=100, 20 bytes of data

ACK=120

TCP ACK Generation [RFCs 1122, 2581]

event at receiver

arrival of in-order segment with

expected seq #. All data up to

expected seq # already ACKed

arrival of in-order segment with

expected seq #. One other

segment has ACK pending

arrival of out-of-order segment

higher-than-expect seq. # .

Gap detected

arrival of segment that

partially or completely fills gap

TCP receiver action

delayed ACK. Wait up to 500ms

for next segment. If no next segment,

send ACK

immediately send single cumulative

ACK, ACKing both in-order segments

immediately send duplicate ACK,

indicating seq. # of next expected byte

immediate send ACK, provided that

segment starts at lower end of gap

TCP Fast Retransmit

• time-out period often
relatively long:

▪ long delay before
resending lost packet

• detect lost segments via
duplicate ACKs.

▪ sender often sends
many segments back-
to-back

▪ if segment is lost,
there will likely be
many duplicate
ACKs.

if sender receives 3
ACKs for same data

(“triple duplicate
ACKs”), resend unacked
segment with smallest
seq #

▪ likely that unacked
segment lost, so
don’t wait for
timeout

TCP fast retransmit

TCP Fast Retransmit

X

fast retransmit after sender
receipt of triple duplicate ACK

Host BHost A

Seq=92, 8 bytes of data

ACK=100

ti
m

e
o
u
t

ACK=100

ACK=100

ACK=100

Seq=100, 20 bytes of data

Seq=100, 20 bytes of data

TCP Flow Control

application

process

TCP socket
receiver buffers

TCP
code

IP
code

application

OS

receiver protocol stack

application may
remove data from

TCP socket buffers ….

… slower than TCP
receiver is delivering
(sender is sending)

from sender

receiver controls sender, so

sender won’t overflow

receiver’s buffer by transmitting

too much, too fast

flow control

TCP flow Control

• receiver “advertises” free
buffer space by including rwnd
value in TCP header of
receiver-to-sender segments

▪ RcvBuffer size set via
socket options (typical
default is 4096 bytes)

▪ many operating systems
autoadjust RcvBuffer

• sender limits amount of
unacked (“in-flight”) data to
receiver’s rwnd value

• guarantees receive buffer will
not overflow

buffered data

free buffer spacerwnd

RcvBuffer

TCP segment payloads

to application process

receiver-side buffering

Connection Management

before exchanging data, sender/receiver “handshake”:
❖ agree to establish connection (each knowing the other willing

to establish connection)

❖ agree on connection parameters

connection state: ESTAB
connection variables:

seq # client-to-server
server-to-client

rcvBuffer size

at server,client

application

network

connection state: ESTAB
connection Variables:

seq # client-to-server
server-to-client

rcvBuffer size

at server,client

application

network

Socket clientSocket =

newSocket("hostname","port

number");

Socket connectionSocket =

welcomeSocket.accept();

Agreeing to Establish a Connection

Q: will 2-way handshake
always work in
network?

• variable delays

• retransmitted messages
(e.g. req_conn(x)) due
to message loss

• message reordering

• can’t “see” other side

2-way handshake:

Let’s talk

OK
ESTAB

ESTAB

choose x
req_conn(x)

ESTAB

ESTAB
acc_conn(x)

Agreeing to Establish a Connection

2-way handshake failure scenarios:

half open connection!
(no client!)

retransmit
req_conn(x)

ESTAB

req_conn(x)

client
terminates

server
forgets x

connection
x completes

retransmit
req_conn(x)

ESTAB

req_conn(x)

data(x+1)

retransmit
data(x+1)

accept
data(x+1)

choose x
req_conn(x)

ESTAB

ESTAB

acc_conn(x)

client
terminates

ESTAB

choose x
req_conn(x)

ESTAB

acc_conn(x)

data(x+1) accept
data(x+1)

connection
x completes server

forgets x

TCP 3-Way Handshake

SYNbit=1, Seq=x

choose init seq num, x
send TCP SYN msg

ESTAB

SYNbit=1, Seq=y
ACKbit=1; ACKnum=x+1

choose init seq num, y
send TCP SYNACK
msg, acking SYN

ACKbit=1, ACKnum=y+1

received SYNACK(x)
indicates server is live;
send ACK for SYNACK;

this segment may contain
client-to-server data

received ACK(y)
indicates client is live

SYNSENT

ESTAB

SYN RCVD

client state

LISTEN

server state

LISTEN

TCP 3-Way Handshake: FSM

closed

L

listen

SYN
rcvd

SYN
sent

ESTAB

Socket clientSocket =

newSocket("hostname","port

number");

SYN(seq=x)

Socket connectionSocket =

welcomeSocket.accept();

SYN(x)

SYNACK(seq=y,ACKnum=x+1)
create new socket for

communication back to client

SYNACK(seq=y,ACKnum=x+1)

ACK(ACKnum=y+1)
ACK(ACKnum=y+1)

L

TCP: Closing a Connection

• client, server each close their side of connection

▪ send TCP segment with FIN bit = 1

• respond to received FIN with ACK

▪ on receiving FIN, ACK can be combined with own FIN

• simultaneous FIN exchanges can be handled

TCP: Closing a Connection

FIN_WAIT_2

CLOSE_WAIT

FINbit=1, seq=y

ACKbit=1; ACKnum=y+1

ACKbit=1; ACKnum=x+1

wait for server
close

can still
send data

can no longer
send data

LAST_ACK

CLOSED

TIMED_WAIT

timed wait
for 2*max

segment lifetime

CLOSED

FIN_WAIT_1 FINbit=1, seq=xcan no longer
send but can
receive data

clientSocket.close()

client state server state

ESTABESTAB

Questions?

