
ACS-3911-050 Computer Network

Chapter 3
Transport Layer

ACS-3911-050 – Slides Used In The Course

A note on the use of these PowerPoint slides:

We’re making these slides freely available to all (faculty,
students, readers). They’re in PowerPoint form so you see
the animations; and can add, modify, and delete slides
(including this one) and slide content to suit your needs.
They obviously represent a lot of work on our part. In
return for use, we only ask the following:

• If you use these slides (e.g., in a class) that you mention
their source (after all, we’d like people to use our
book!)

• If you post any slides on a www site, that you note that
they are adapted from (or perhaps identical to) our
slides, and note our copyright of this material.

Thanks and enjoy! JFK/KWR

All material copyright 1996-2016
J.F Kurose and K.W. Ross, All Rights Reserved

Roadmap

3.1 transport-layer services

3.2 multiplexing and demultiplexing

3.3 connectionless transport: UDP

3.4 principles of reliable data transfer

3.5 connection-oriented transport: TCP
▪ segment structure
▪ reliable data transfer
▪ flow control
▪ connection management

3.6 principles of congestion control

3.7 TCP congestion control

Principles of Congestion Control

congestion:

• informally: “too many sources sending too much
data too fast for network to handle”

• different from flow control!

• manifestations:

▪ lost packets (buffer overflow at routers)

▪ long delays (queueing in router buffers)

• a top-10 problem!

Causes/Costs of Congestion: Scenario 1

❖ two senders, two
receivers

❖ one router, infinite
buffers

❖ output link capacity: R

❖ no retransmission

❖ maximum per-connection
throughput: R/2

unlimited shared

output link buffers

Host A

original data: lin

Host B

throughput: lout

R/2

R/2

l
o

u
t

lin R/2

d
e

la
y

lin

❖ large delays as arrival rate, lin,
approaches capacity

Causes/Costs of Congestion: Scenario 2

❖ one router, finite buffers

❖ sender retransmission of timed-out packet

▪ application-layer input = application-layer output: lin =
lout

▪ transport-layer input includes retransmissions : lin
’ lin

finite shared output

link buffers

Host A

lin : original data

Host B

loutl'in: original data, plus

retransmitted data

Causes/Costs of Congestion: Scenario 2

idealization: perfect
knowledge

• sender sends only when
router buffers available

finite shared output

link buffers

lin : original data
loutl'in: original data, plus

retransmitted data

copy

free buffer space!

R/2

R/2

l
o

u
t

lin

Host B

A

Causes/Costs of Congestion: Scenario 2

Idealization: known loss packets can be lost, dropped at
router due to full buffers

• sender only resends if packet known to be lost

lin : original data
loutl'in: original data, plus

retransmitted data

copy

no buffer space!
A

Host B

Causes/Costs of Congestion: Scenario 2

lin : original data
loutl'in: original data, plus

retransmitted data

free buffer space!

Idealization: known loss packets
can be lost, dropped at
router due to full buffers

❖ sender only resends if
packet known to be lost

R/2

R/2lin

l
o

u
t

when sending at R/2,

some packets are

retransmissions but

asymptotic goodput

is still R/2 (why?)

A

Host B

Causes/Costs of Congestion: Scenario 2

A

lin
loutl'in

copy

free buffer space!

timeout

R/2

R/2lin

l
o

u
t

when sending at R/2,

some packets are

retransmissions

including duplicated

that are delivered!

Host B

Realistic: duplicates

• packets can be lost, dropped at
router due to full buffers

• sender times out prematurely,
sending two copies, both of which are
delivered

Causes/Costs of Congestion: Scenario 2

R/2

l
o

u
t

when sending at R/2,

some packets are

retransmissions

including duplicated

that are delivered!

“costs” of congestion:
❖ more work (retrans) for given “goodput”
❖ unneeded retransmissions: link carries multiple copies of pkt

▪ decreasing goodput

R/2lin

Realistic: duplicates
❖ packets can be lost, dropped

at router due to full buffers

❖ sender times out prematurely,
sending two copies, both of
which are delivered

Causes/Costs of Congestion: Scenario 3

❖ four senders
❖ multihop paths
❖ timeout/retransmit

Q: what happens as lin and lin
’ increase ?

finite shared output

link buffers

Host A lout Host B

Host C

Host D

lin : original data

l'in: original data, plus

retransmitted data

A: as red lin
’ increases, all arriving blue

pkts at upper queue are dropped, blue
throughput g 0

Causes/Costs of Congestion: Scenario 3

another “cost” of congestion:

• when packet dropped, any “upstream transmission
capacity used for that packet was wasted!

C/2

C/2

l
o

u
t

lin
’

Roadmap

3.1 transport-layer services

3.2 multiplexing and demultiplexing

3.3 connectionless transport: UDP

3.4 principles of reliable data transfer

3.5 connection-oriented transport: TCP
▪ segment structure
▪ reliable data transfer
▪ flow control
▪ connection management

3.6 principles of congestion control

3.7 TCP congestion control

TCP Congestion Control:
Additive Increase/ Multiplicative Decrease

• approach: sender increases transmission rate (window size),
probing for usable bandwidth, until loss occurs

▪ additive increase: increase cwnd by 1 MSS every RTT until
loss detected

▪ multiplicative decrease: cut cwnd in half after loss

c
w
n
d
:

T
C

P
 s

e
n

d
e

r

c
o

n
g

e
s
ti
o

n
 w

in
d

o
w

 s
iz

e

AIMD saw tooth

behavior: probing

for bandwidth

additively increase window size …
…. until loss occurs (then cut window in half)

time

TCP Congestion Control: Details

• sender limits transmission:

• cwnd is dynamic, function of
perceived network congestion

TCP sending rate:

• roughly: send cwnd
bytes, wait RTT for
ACKS, then send more
bytes

last byte
ACKed sent, not-

yet ACKed
(“in-
flight”)

last byte
sent

cwnd

LastByteSent-

LastByteAcked
< cwnd

sender sequence number space

rate ~~
cwnd

RTT
bytes/sec

TCP Slow Start

• when connection begins,
increase rate
exponentially until first
loss event:

▪ initially cwnd = 1 MSS

▪ double cwnd every
RTT

▪ done by incrementing
cwnd for every ACK
received

• summary: initial rate is
slow but ramps up
exponentially fast

Host A

R
T

T

Host B

time

TCP: Detecting, Reacting To Loss

• loss indicated by timeout:

▪ cwnd set to 1 MSS;

▪window then grows exponentially (as in slow start)
to threshold, then grows linearly

• loss indicated by 3 duplicate ACKs: TCP RENO

▪ dup ACKs indicate network capable of delivering
some segments

▪ cwnd is cut in half window then grows linearly

• TCP Tahoe always sets cwnd to 1 (timeout or 3
duplicate acks)

TCP: Switching From Slow Start To CA

Q: when should the
exponential increase
switch to linear?

A: when cwnd gets to 1/2
of its value before
timeout.

Implementation:
❖ variable ssthresh

❖ on loss event, ssthresh
is set to 1/2 of cwnd just
before loss event

Summary: TCP Congestion Control

timeout

ssthresh = cwnd/2
cwnd = 1 MSS

dupACKcount = 0

retransmit missing segment

L

cwnd > ssthresh

congestion

avoidance

cwnd = cwnd + MSS (MSS/cwnd)
dupACKcount = 0

transmit new segment(s), as allowed

new ACK
.

dupACKcount++

duplicate ACK

fast

recovery

cwnd = cwnd + MSS
transmit new segment(s), as allowed

duplicate ACK

ssthresh= cwnd/2
cwnd = ssthresh + 3

retransmit missing segment

dupACKcount == 3

timeout

ssthresh = cwnd/2
cwnd = 1
dupACKcount = 0

retransmit missing segment

ssthresh= cwnd/2
cwnd = ssthresh + 3
retransmit missing segment

dupACKcount == 3cwnd = ssthresh
dupACKcount = 0

New ACK

slow

start

timeout

ssthresh = cwnd/2
cwnd = 1 MSS

dupACKcount = 0
retransmit missing segment

cwnd = cwnd+MSS
dupACKcount = 0
transmit new segment(s), as allowed

new ACKdupACKcount++

duplicate ACK

L

cwnd = 1 MSS
ssthresh = 64 KB
dupACKcount = 0

New
ACK!

New
ACK!

New
ACK!

TCP Throughput

❖ avg. TCP thruput as function of window size, RTT?
▪ ignore slow start, assume always data to send

❖ W: window size (measured in bytes) where loss occurs
▪ avg. window size (# in-flight bytes) is ¾ W

▪ avg. thruput is 3/4W per RTT

W

W/2

avg TCP thruput =
3
4

W
RTT

bytes/sec

TCP Fairness

fairness goal: if K TCP sessions share same
bottleneck link of bandwidth R, each should
have average rate of R/K

TCP connection 1

bottleneck

router

capacity R
TCP connection 2

Why Is TCP Fair?

two competing sessions:

❖ additive increase gives slope of 1, as throughout increases

❖ multiplicative decrease decreases throughput proportionally

R

R

equal bandwidth share

Connection 1 throughput

congestion avoidance: additive increase

loss: decrease window by factor of 2

congestion avoidance: additive increase
loss: decrease window by factor of 2

Fairness (More)

Fairness and UDP

❖ multimedia apps often
do not use TCP
▪ do not want rate

throttled by congestion
control

❖ instead use UDP:
▪ send audio/video at

constant rate, tolerate
packet loss

Fairness, parallel TCP
connections

❖ application can open
multiple parallel
connections between two
hosts

❖ web browsers do this

❖ e.g., link of rate R with 9
existing connections:
▪ new app asks for 1 TCP, gets rate

R/10

▪ new app asks for 11 TCPs, gets R/2

Explicit Congestion Notification (ECN)

network-assisted congestion control:
▪ two bits in IP header (ToS field) marked by network router to

indicate congestion
▪ congestion indication carried to receiving host
▪ receiver (seeing congestion indication in IP datagram)) sets ECE

bit on receiver-to-sender ACK segment to notify sender of
congestion

source

application

transport

network

link

physical

destination

application

transport

network

link

physical

ECN=00 ECN=11

ECE=1

IP datagram

TCP ACK segment

Summary

• Principles behind transport layer services:
▪ multiplexing, demultiplexing
▪ reliable data transfer
▪ flow control
▪ congestion control

• Instantiation, implementation in the Internet
▪ UDP
▪ TCP

next:
❖ Leaving the network “edge” (application, transport

layers)
❖ Into the network “core”

Questions?

