
UML Notation for

Class diagrams

Object diagrams

ACS-3913 Ron McFadyen 1

Class Diagram

A class diagram begins as a conceptual or analysis class model

and evolves to a design class model

Used throughout the development process … More detail added

as time goes by

A static view of classes – shows structure: data, operations, and

associations

ACS-3913 Ron McFadyen 2

ACS-3913 Ron McFadyen 3

Classes

Represented by a rectangle with possibly 3 compartments

-as needed

Customer

Customer

Name

Address

Customer

Name

Address

getName()

checkCreditRating()

Customer

getName()

checkCreditRating()

ACS-3913 Ron McFadyen 4

Classes

«Singleton»

dbFacade
Some classes are stereotyped:

Stereotyping dbFacade as singleton conveys substantial

information about the class and its behaviour.

Some methodologies have 3 stereotypes for “analysis”

classes: boundary, control, entity

-may have seen this in ACS-2913

ACS-3913 Ron McFadyen 5

Classes

Composite

Abstract Classes

An abstract class is one that is never instantiated (only

concrete subclasses can be instantiated). To indicate an

abstract class, the class name is given in italics or by

using an “abstract” stereotype.

ACS-3913 Ron McFadyen 6

Attributes

an object contains data – data fields are defined as part of the Class

definition

examples:

• Students have names, addresses, etc;

• Courses have titles, descriptions, prerequisite information.

Rectangle

corner: Point

Student

name

address

Level of detail present will depend on whether you are in

analysis or design, and your purposes at the time

In ACS-3913 we won’t be showing data types

Data type

ACS-3913 Ron McFadyen 7

Attributes

To what degree is an attribute visible to other classes?

Private –

Public +

Protected #

Package ~

Student

-name

-address

In ACS-3913 we won’t be showing attribute visibility in class

diagrams

ACS-3913 Ron McFadyen 8

Attributes

Default values =

Derived values /

Multiplicity []

Ordering {ordered}

Uniqueness {unique}

Invoice

-date:Date = today

-/total: Currency

-payments[0..*]: Currency

Student

-name

-address[1..3] {unique}

ACS-3913 Ron McFadyen 9

Operations.

What are the responsibilities of a class? What can it do? What are the

methods?

Parameters

Signature the name, parameters, and return type of the operation

Student

+getName()

+getGPA(term :Term, gpaType: String)

In ACS-3913 we will normally show the names of methods

ACS-3913 Ron McFadyen 10

Associations

• correspond to verbs expressing a relationship between classes

• example

a Library Member borrows a Copy of a Book

•Multiplicities

• we indicate via multiplicities the range of allowable

cardinalities for participation in an association

• examples:

1

1..*

0..*

*

1..3

In ACS-3913 multiplicities and

associations are very important to us

ACS-3913 Ron McFadyen 11

Associations

• Names and roles

• you can name the relationship and indicate how to read it

• you can give role names for participating objects

Person Company
Works for1..* 1

employeremployee

The role of a Person in this relationship The role of a Company in this relationship

The name of the relationship and the

direction for reading the name

ACS-3913 Ron McFadyen 12

Associations

• example:

An employee reports to another employee (his/her

supervisor)

*

0,1

Employee

reports to

subordinate

supervisor

A reflexive

association

Role names are very important for reflexive/recursive

associations

ACS-3913 Ron McFadyen 13

Associations and Navigability

Navigability is an adornment (an arrowhead) to an association

endpoint to indicate that an instance can be reached from an

instance at other end.

Person Company
Works for1..* 1

employeremployee

An instance of Company can send a message to an instance of

Person.
This implies that company holds references to its persons (e.g. an array list of

persons).

Whether or not a Person can send a message to a Company is not

specified above.

When possible we show this in our ACS-3913 class diagrams

ACS-3913 Ron McFadyen 14

Generalization

a generalization is a relationship between a general thing (the

superclass or parent class) and a more specific thing

(the subclass or child class)

example:

a StaffMember is a specialized kind of LibraryMember

a StudentMember is a specialized kind of LibraryMember

LibraryMember

StaffMember StudentMember

In ACS-3913 generalization hierarchies appear very often in

our class diagrams

ACS-3913 Ron McFadyen 15

Motivation for partitioning a class into subclasses:

•subclass has additional attributes of interest

•subclass has additional associations of interest

•subclass is operated on, handled, reacted to, or manipulated

differently than the superclass or other subclasses

ACS-3913 Ron McFadyen 16

Generalization

Multiple subclasses can be grouped to indicate they are related

Subclasses – very useful

LibraryMember

StaffMember StudentMember

It then becomes meaningful to consider certain constraints:

complete, incomplete, disjoint, overlapping

ACS-3913 Ron McFadyen 17

Generalization

Inheritance of attributes and behaviour:

•everything a LibraryMember can do, a StudentMember can do

•If a LibraryMember can borrow a book, so can a

StaffMember and a StudentMember

•a StaffMember and a StaffMember have all the attributes the

LibraryMember has, and possibly more

Specialization: there are some things that a specialized class can

do that a LibraryMember cannot

LibraryMember

StaffMember StudentMember

ACS-3913 Ron McFadyen 18

Payment

Amount: money

Cash Payment Credit Payment Cheque Payment

Salepays-for
* 1

Example.

Every payment, regardless of whether it is cash, credit, or cheque, has an

Amount and it is associated with a Sale

CreditCard Cheque

1

1

1

*

Only credit payments are associated with credit cards

Only cheque payments are associated with cheques

ACS-3913 Ron McFadyen 19

The name Payment is italicized - meaning it is an abstract class

An abstract class is a class that will never be instantiated;

only its subclasses can exist

If “Payment” was not in italics then a Payment could exist that is

not a Cash, Credit, or Check payment (see previous slide)

Payment

Amount: money

Cash Payment Credit Payment Cheque Payment

ACS-3913 Ron McFadyen 20

What differences are there in the two hierarchies below:

Payment

Unauthorized

Payment

Authorized Payment

PaymentState

Unauthorized State Authorized State

Payment is in

* 1

Does one of the above use composition?

At runtime, how many objects exist?

What is required to change a payment from unauthorized to authorized?

ACS-3913 Ron McFadyen 21

Aggregation and Composition

both are associations used to denote that an object from one

class is part of an object of another class

Program Course

An example of Aggregation: a course is part of a program.

The same course could be part of several programs

Suppose a course “Data structures and algorithms” is part of both the “Applied CS” and

the “Scientific computing” programs

Deleting a program should not result in a course being deleted

**

ACS-3913 Ron McFadyen 22

Aggregation and Composition

Board Square

Composition is similar to, but stronger than aggregation. If

you specify composition, then you are saying that one object

owns its parts.

A Board is made up of several Squares. A Square will belong to just one Board.

If a Board is deleted, then its Squares are deleted too.

What is the multiplicity at the composition end of the association?

*

ACS-3913 Ron McFadyen 23

Aggregation and Composition

Invoice InvoiceLine

Consider Invoices and their Invoice Lines

Question: Is the association aggregation or composition?

?

?

*

In ACS-3913 we won’t be concerned with showing or

However, we do need to show multiplicities

ACS-3913 Ron McFadyen 24

A composite is a group of objects in which some objects contain

others; one object may represent groups, and another may

represent an individual item, a leaf.

Composite Pattern

We will examine the composite pattern later in the course. At

this time, we are many concerned with its structural aspect.

Consider the class diagram that follows.

What objects does it allow us to instantiate and how will

they relate to one another?

What is this data structure?

What does an instance look like?

ACS-3913 Ron McFadyen 25

MenuComponent

count()

MenuItem

count()

Menu

components: List

count()

*
Waitress

1

Composite Pattern

Consider a UML class diagram for menus. Menus may be

complex and contain other menus.

ACS-3913 Ron McFadyen 26

An object diagram illustrating a tree

… a possible main menu comprising several connected objects

breakfast:Menu

sandwich: MenuItem soup: MenuItem

:Waitress

Composite Pattern

special: MenuItem reg: MenuItem

coffee: MenuItem

lunch: Menu

main: Menu

ACS-3913 Ron McFadyen 27

The decorator pattern allows us to enclose an object inside another

object. The enclosing object is called a decorator. The other object

is the component, it is the decorated object.

The decorator conforms to the interface of the enclosed component

and so its presence is transparent to the components clients. The

decorator forwards requests to the component, but may perform

some processing before/after doing so.

We will examine the decorator pattern later in the course. Consider

the class diagram that follows.

What objects does it allow us to instantiate and how will they relate to one another?

What is this data structure?

What does an instance look like?

Decorator Pattern

ACS-3913 Ron McFadyen 28

UML class diagram

DecoratedReceipt

print()

Receipt

print()

Decorator

print()

other()

1
sale

timeOfDay productCoupon moneySaved

Decorator Pattern

1 1

How does the Decorator

pattern differ from the

Composite pattern?

What would a typical

object diagram look

like?

ACS-3913 Ron McFadyen 29

Class Diagram

Association classes

Used when there is data or behaviour related to the association

Useful for many-to-many associations

Student
*

A student registers for a section and a section has many

students registered

Section
*

ACS-3913 Ron McFadyen 30

Class Diagram

Association classes

Suppose we need to store information that describes the

association

Student
*

Section
*

Enrollment

termMark

examMark

grade

gp()

ACS-3913 Ron McFadyen 31

Class Diagram

Association classes

An association class is an association and it is a class– it can

participate in associations

Student
*

Section
*

Enrollment

termMark

examMark

grade

gp()

Exam
*0,1

ACS-3913 Ron McFadyen 32

Class Diagram

Association classes

For a given student and section there can be only one occurrence

of Enrollment. This rule is very restrictive.

Student
*

Section
*

Enrollment

termMark

examMark

grade

gp()

Exam
*0,1

ACS-3913 Ron McFadyen 33

Class Diagram

Association classes

In this example we are consider an association between Student

and Course.

Student
*

Course
*

Enrollment

term

section

grade

With only one occurrence

of enrollment for a given

student and course, we

would only be keeping the

most recent values for

term, grade, etc.
gp()

Exam
*0,1

ACS-3913 Ron McFadyen 34

Class Diagram

Association classes

To allow more flexibility, the modeler might promote an

association class to a full class, as in:

Student

*

Course
1

Enrollment

term

section

grade

gp()

Exam
*0,1

*

1

Now, there can be any

number of enrollment

instances for

course/student

combinations

ACS-3913 Ron McFadyen 35

Class Diagram

N-ary associations

An n-ary association is an association among 3 or more classes

Student

Section

*
Term

enrollment

*

*

ACS-3913 Ron McFadyen 36

Class Diagram

N-ary associations

Each instance of the association is an n-tuple of values from the

respective classes. For each association we have one student, one

section, one term

The multiplicity on a role represents the potential number of

instance tuples in the association when the other n-1 values are

fixed.

Student

Section

*
Term

enrollment

*

*

For a given student and term, we

have many sections, …

ACS-3913 Ron McFadyen 37

Class Diagram

N-ary associations

Consider a team, goalies, and the season. We could record the

performance of each goalie for each team and each season.

Team

Year

*
Player

*

*

goalie

Record
goalsFor

goalsAgainst

Wins

Losses

ties

season

team

Object Diagram

An object diagram is an object graph showing objects (possibly

named and including attribute values) and links.

A link shows a connection from one object to another.

ACS-3913 Ron McFadyen 38

ACS-3913 Ron McFadyen 39

Objects

An individual object (instance of a class) is shown with

naming information underlined

A sale object named s4

An unnamed sale object

An object named s4

:sale

s4:sale

s4

ACS-3913 Ron McFadyen 40

An object diagram

breakfast:Menu

sandwich: MenuItem soup: MenuItem

:Waitress

special: MenuItem reg: MenuItem

coffee: MenuItem

main: Menu

lunch: Menu

ACS-3913 Ron McFadyen 41

Interfaces

An interface is special type of class that cannot be instantiated.

An application can never instantiate an interface.

An interface defines a set of public attributes and operations that

some class must use

There is no behaviour defined, no method coded (exceptions

now with Java 8 where we can now specify default interface

methods

– see https://docs.oracle.com/javase/tutorial/java/IandI/defaultmethods.html)

Normally, a class inherits the interface and provides the

implementation

ACS-3913 Ron McFadyen 42

From Head First …

<<interface>>

Observer

update()

implements the update operation –

there is code here

StatisticsDisplay

Specifies the signature for update but

there is no implementation, no code

update()

Note : the line is a

dashed line!

Next slide shows code for this

ACS-3913 Ron McFadyen 43

From Head First …

import java.util.*;

public class StatisticsDisplay implements Observer {

…

public void update(float temp, float humidity, float pressure) {

tempSum += temp;

numReadings++;

if (temp > maxTemp) {

maxTemp = temp;

}

if (temp < minTemp) {

minTemp = temp;

}

display();

}

public interface Observer {

public void update(float temp, float humidity, float pressure);

}

