
Sequence Diagram

•A UML diagram used to show how objects interact. Example:

1ACS-3913 Ron McFadyen

r: Register s: Sale

: Payment

makePayment()

makePayment()
new()

• The above starts with a Register object, r, receiving a makePayment

message.

• r then sends makePayment to a Sale object, s.

• s then creates a Payment object (its constructor executes) and then s

returns control back to r which then returns control back to whatever

sent the first makePayment message.

Sequence Diagram

•Objects that pre-exist a collaboration (& classes too) are

represented horizontally across the top of the diagram

•A lifeline is a dashed line extending down from the

object/class

•Time is represented vertically down the diagram. Time

moves forward as you go downwards

2ACS-3913 Ron McFadyen

Sequence Diagram

•The time an object is active is indicated by a narrow rectangle

•Called an activation bar or focus of control

•An object is considered active from the point in time it

receives a message to the point in time when it returns to

its caller or stops.

•An active object that sends a synchronous message is

suspended until control returns.

3ACS-3913 Ron McFadyen

ACS-3913 is concerned with

synchronous messages only

Sequence Diagram

4ACS-3913 Ron McFadyen

In ACS-3913 we are concerned with:

• synchronous messages - an object sends a message and

waits (i.e. execution is suspended) until there is a response

(reply) from the called object

• creation of objects

• replies - sometimes its useful to show a return of control

with possibly a returned value

• always show the focus of control!

Sequence Diagram

Message types and their lines

• Synchronous

• Creation

• Reply

5ACS-3913 Ron McFadyen

Note these are

dashed lines

Sequence Diagram

Below:
s receives the synchronous message named makePayment.
The makePayment method of Sale executes, and creates a
Payment object.

6ACS-3913 Ron McFadyen

s: Sale

: Paymentnew()
makePayment()

Activation box

Represents that makePayment has control (executes).

makePayment is suspended while a Payment object is created…

while Payment’s constructor executes.

A message where an object sends a message to itself

i.e. an object calls one of its own methods

Note the additional activation box for getTotal()

overlaid on that for getBalance()

7ACS-3913 Ron McFadyen

Reflexive messages

: Sale

getBalance()

: Payment

getAmount()

getTotal()

Sequence Diagrams: Objects & Classes

A sale object

named s4
An unnamed

sale object

An object

named s4

Sale

The class Sale

:Sale s4:Sales4

8ACS-3913 Ron McFadyen

Syntax

<Object name> : <Class name>

Syntax

<Class name>

Example:

What is the Sequence Diagram for when makePayment received by a register?

9ACS-3913 Ron McFadyen

public class Register

{

private ProductCatalog catalog;

private Sale sale;

…

public void makePayment (int cashTendered)

{sale.makePayment(cashTendered);

System.out.println(

"made a payment, change due= "

+ sale.getBalance());

}

}

public class Sale

...

private Payment payment;

public int getBalance()

{

return payment.getAmount() - getTotal() ;

}

public int getTotal()

{

...

return total;

}

public void makePayment (int cashTendered)

{

payment = new Payment(cashTendered);

}

}

public class Payment {

private int amount;

public Payment(int cashTendered)

{ amount = cashTendered ;

}

public int getAmount()

{ return amount;

}

}

: Register : Sale

: Payment

makePayment()

makePayment()
new()

sd Make payment

Sequence Diagram for makePayment received by a register

Some message starts the collaboration

Objects that pre-exist the collaboration are shown at top of diagram.

Other objects are shown where/when they are created

10ACS-3913 Ron McFadyen

getBalance() getAmount()

getTotal()

Iteration

public int getTotal()

{

…

int total = 0;

while(…)

{

…

int lineTotal = sli.getSubtotal() ;

total = total + lineTotal ;

}

return total;

}

11ACS-3913 Ron McFadyen

Consider the following code segment where a Sale is interacting

with its Line Items in order to obtain the total value of the sale.

Iteration

:Sale :SalesLineItem

t=getTotal()

st = getSubTotal()

loop [more items]

loop is a keyword to specify iteration in a sequence diagram

Note the box/frame around the involved messages

12ACS-3913 Ron McFadyen

A guard showing the

condition that applies

:Circle Canvas

getCanvas()
alt

Behaviour in Singleton Pattern shown using a decision structure (i.e. alt)

:Canvas

canvasSingleton

getInstance()

[inst == null]

[else]

draw()

Consider the BlueJ Shapes example: Below is a sequence diagram for when a circle is asked to draw

itself. Canvas is a “singleton” … when you ask for the instance of Canvas, there are two ways it can

complete.

13ACS-3913 Ron McFadyen

canvasSingleton

wait()

Decision Structures

draw()

new()

guards showing the

conditions that apply

