
ACS-3913 Ron McFadyen 1

Duck Example

Consider the text example (up to page 6).

•Each type of duck is a subclass of Duck

•Most subclasses implement their own fly() and quack() operations

•Maintenance appears difficult as new duck types are required and as

behaviour changes.

•As flying is seen to be subject to change there is motivation to extract that

behaviour into its own class

Page 7: inheritance not working out so well…

•As quacking is seen to be subject to change there is motivation to extract

that behaviour into its own class

•The above leads to applying the strategy pattern – once for flying and once for

quacking.

ACS-3913 Ron McFadyen 2

Consider that we have a family or collection of algorithms, one of

which is to utilized at runtime by a client.

When we utilize the strategy pattern we make the algorithms

interchangeable and implement each in its own subclass of an

interface or abstract class.

At runtime the appropriate algorithm is associated with the client.

Strategy Pattern

http://en.wikipedia.org/wiki/Image:Observer-pattern-uml.jpg

ACS-3913 Ron McFadyen 3

Generic pattern

Context

…

«interface»

Strategy

…

ConcreteStrategy1

…

ConcreteStrategyn

……

The class diagram indicates the context knows only the strategy interface and

not the concrete strategy types.

This is all the context needs to know and this allows us to add/remove

strategies without affecting the context.

Some class that

needs a concrete

strategy

1

ACS-3913 Ron McFadyen 4

Generic pattern with collaboration

Context

…

«interface»

Strategy

…

ConcreteStrategy1

…

ConcreteStrategyn

……

Strategy

Concrete

strategy

Concrete

strategy

strategy
context

Strategy is a common interface for all supported algorithms.

The context uses this interface … invokes an algorithm defined by some

ConcreteStrategy.

Each concrete strategy implements an algorithm.

The context participant is composed with a ConcreteStrategy object.

1

ACS-3913 Ron McFadyen 5

Duck Example

Duck

display()

performFly()

setFlyBehavior()

…

«interface»

FlyBehavior

fly()

MallardDuck

display()

…

FlyWithWings

fly()

FlyNoWay

fly()

Quack

quack()

«interface»

QuackBehavior

quack()

Squeak

quack()

Mute

quack()

flyBehavior

quackBehavior

DecoyDuck

display()

…

…

The algorithms that implement flying are each encapsulated in a subclass of FlyBehavior, and

the algorithms that implement quacking are each encapsulated in a subclass of QuackBehavior.

A duck is composed with one flying behaviour and one quacking behaviour.

1

1

ACS-3913 Ron McFadyen 6

Ch1 & Duck Example

Consider the text example.

•Examine the code to ensure you understand how the strategy pattern is

implemented. Run the example.

Three design principles are discussed.

•Identify the aspects of your application that vary and separate them from

what stays the same

•Program to an interface and not an implementation

•Favour composition over inheritance

ACS-3913 Ron McFadyen 7

Duck Example

Draw an object diagram for the case immediately after the

statement (page 21):

Duck mallard = new MallardDuck();

Draw sequence diagrams to illustrate behaviour. What messages

are sent

•When main() on page 21 executes?

Duck mallard = new MallardDuck();

mallard.performQuack();

mallard.performFly();

. . .

ACS-3913 Ron McFadyen 8

Duck Example

Suppose you are a developer and there is a requirement for a new

quacking behavour.

•What must you change in the existing code?

•What classes must you write?

Part of assignment 1:

Create a new algorithm for quacking behavior … talking. Name

this class Italk.

Remember … identify yourself via @author …
Create a sequence diagram that shows the messages sent for the code below.

Create an object diagram to show the objects that exist immediately after the

last statement below.
Duck m = new DecoyDuck();

m.performQuack();

m.setQuackingBehavior(new Italk());

m.performQuack();

