
ACS-3913 Ron McFadyen 1

Decorator

Sometimes we need a way to add responsibilities to an object

dynamically and transparently.

The Decorator pattern gives a mechanism without using

inheritance.

The Decorator pattern allows one to add and remove layers to a

base object.

ACS-3913 Ron McFadyen 2

Decorator

For example, we may have a text object and we want to

sometimes add a scrollbar and sometimes we want to add a

border.

Original text object

Scrollbar decorator

Border decorator

ACS-3913 Ron McFadyen 3

Decorator

textScrollbarBorder

decorators decorated

The objects are linked (a linked list or chain of objects).

The last in the list is the decorated object.

ACS-3913 Ron McFadyen 4

Decorator

e.g. In a windowing environment, scrolling bars, borders, etc.

could be decorators on top of the text view of a document. In this

example, they are all “components”

:textView:scrollBar:border

component component

draw()draw()draw()

When it’s necessary for the document to appear (to draw itself), the draw

message would be sent to :border and then:

• :border would draw itself;

• :border would send the draw message to :scrollBar which would draw itself;

• :scrollBar would send the draw message to :textView which would draw itself

ACS-3913 Ron McFadyen 5

Decorator

If draw is sent to :border , as discussed on previous slide, what is

the sequence diagram?

:textView:scrollBar:border

ACS-3913 Ron McFadyen 6

Decorator

1 componentcomponent

decoratorConcrete

component

Concrete

decoratorA

Concrete

decoratorB

operation()

operation()

operation() operation()

operation()

Client

See page 93

ACS-3913 Ron McFadyen 7

Decorator

1 component
Beverage

Condiment

DecoratorHouseBlend

cost()

getDescription

getDescription()

See page 94

DarkRoast

Decaf

cost()

cost()

cost()

Espresso

cost()

Milk Mocha Soy Whip
cost()

getDescription()

cost()

getDescription()

cost()

getDescription()

cost()

getDescription()

The text shows an attribute in these concrete decorators.

An implementation needs a reference to the next component.

This is implied by the reflexive association.

Question: What is the object diagram for a whipped mocha decaf?

ACS-3913 Ron McFadyen 8

Decorator

Beverage

Condiment

DecoratorHouseBlend DarkRoast

DecafEspresso

Milk Mocha Soy Whip

Decorator

Decorator

Concrete

decorator

Concrete

component

Component

Concrete

decorator

Concrete

decorator

Concrete

decorator

Concrete

component

Concrete

component

Concrete

component

The class diagram augmented to show the roles the

classes/objects play in the decorator collaboration

1

ACS-3913 Ron McFadyen 9

Constructing a drink

ACS-3913 Ron McFadyen 10

Drink Order 2

ACS-3913 Ron McFadyen 11

Decorator Pattern - example

Consider a POS system. Suppose this system must produce a

sales receipt. A sales receipt will have a header and a footer, and

perhaps more than one header … and more than one footer.

Let’s assume the print() method of Receipt results in the receipt’s

lines being printed

Suppose we add coupons to the sales receipt … perhaps based on

the products purchased / the season / information about the

customer / etc.

Line item 1

Line item 2

Line item 3

…

Time of day header

Product2 coupon header

Money saved footer

ACS-3913 Ron McFadyen 12

Decorator Pattern - example

UML class diagram

DecoratedReceipt

print()

receipt

print()

Decorator

print()

1
sale

timeOfDay productCoupon moneySaved

ACS-3913 Ron McFadyen 13

Decorator Pattern – example

object diagram

a sale object is related to a receipt, but the receipt is decorated with

headers and footers (as a particular receipt requires)

h2:productCoupon

h1: timeOfDays:sale

r: receipt

decorators

f1: moneySaved

The decorated object

ACS-3913 Ron McFadyen 14

Decorator Pattern - example

Printing the receipt

s:sale h1: timeOfDay h2:productCoupon f1: moneySaved r: receipt

print()

print()

print()

print()

printNote()

printCoupon()

printTime()

print()

…

