Decorator

Sometimes we need a way to add responsibilities to an object
dynamically and transparently.

The Decorator pattern gives a mechanism without using
Inheritance.

The Decorator pattern allows one to add and remove layers to a
base object.

ACS-3913 Ron McFadyen 1

Decorator

For example, we may have a text object and we want to
sometimes add a scrollbar and sometimes we want to add a
border.

Border decorator

Scrollbar decorator

For example, we may have
a text object and we want
to sometimes add a
vertical scrollbar and

Sometimes we want to add a
horizontal scrollbar.

Original text object

ACS-3913 Ron McFadyen 2

Decorator

A 4
A 4

Border * Scrollbar text

N _/ \ J
V Y

decorators decorated

The objects are linked (a linked list or chain of objects).

The last in the list is the decorated object.

ACS-3913 Ron McFadyen

Decorator

e.g. In a windowing environment, scrolling bars, borders, etc.
could be decorators on top of the text view of a document. In this

example, they are all “components”
.border .scrollBar textView
component » component >
draw() draw() draw()

When 1t’s necessary for the document to appear (to draw itself), the draw
message would be sent to :border and then:

« :border would draw itself;

« :border would send the draw message to :scrollBar which would draw itself;

« :scrollBar would send the draw message to :textView which would draw itself

ACS-3913 Ron McFadyen 4

Decorator

If draw Is sent to :border , as discussed on previous slide, what is
the sequence diagram?

‘border :scrollBar ‘textView

ACS-3913 Ron McFadyen 5

Decorator

&ﬁu\f\ﬁ’\"aw
ot e
Client component | 147 oo
operation()
/\
Concrete decorator
component operation()
operation() /\
Concrete Concrete
decoratorA decoratorB
operation() operation()
See page 93

ACS-3913 Ron McFadyen

Decorator

Beverage 1

cost0 component
getDescription
Condiment
HouseBlend DarkRoast Decorator
cost() o0 getDescription()
Espresso Decaf VAN
cost() cost()
Milk Mocha Soy Whip
r“ ______ g cost() cost() cost() cost()
‘\ getDescription() getDescription() getDescription() getDescription()
o -E_The text shows an attribute in these concrete decorators.
romeemeeemeenennneeeneeees . | An implementation needs a reference to the next component.
. Seepage 94 | 5

This is implied by the reflexive association.

Question: What is the object diagram for a whipped mocha decaf?

ACS-3913 Ron McFadyen 7

Decorator

1
Beverage
A \‘\Component
conerte Conerete | ooo-opmee T Decorator Condiment
R e Decorator | Decorat
2T ecorator
HouseBlend DarkRoaSt/,/"Concrete et
e gomponent A
Concrete””
Espresso [component | Decaf
Ccncretle'l ConC'eté‘ Conbr\ete \‘x\Concrete
degorator decorgtor decorator decorator
Milk Mocha Soy Whip

The class diagram augmented to show the roles the
classes/objects play in the decorator collaboration

ACS-3913 Ron McFadyen

Constructing a drink
5 the decorator pattern

construeting a drink order with Pecorators

izz) 0 We start with our DarkRoast object MD ;r\ﬂ?\“‘t
T e rom B ks
! £ \ tostl) methd &rink-
(cost() ‘u‘e sty of the
A

) The customer wants Mocha, so we create a Mocha
object and wrap it around the DarkRoast.

© The t also ts Whip, so we create a
Whip decorator and wrap Mocha with it.

Whip is a decarater, so it alse
mivrors DarkRoast's type and
intludes a tost() method.

So, a DarkRoast wrapped in Motha and Whip is still
a Beverage and we can do anything with it we tan do
with 3 DarkRoast, intluding call its cost() method

you are here » 89

@ Now it’s time to compute the cost for the customer. We do this]
by calling cost() on the outermost decorator, Whip, and Whip is
going to delegate computing the cost to the objects it decorates,]
Once it gets a cost, it will add on the cost of the Whip.

(foull see ho)v n
6 Whip calls cost() on Mocha. ("; afew pages-
First, we call cost() on the e Mocha calls .

outmost decorator, Whip. ‘&WWMMM% DarkRoast.

$1.29 cost
1 <. lo¥
b DarkRoast
‘%3%::» o returns its cost,
. 99 cents.
Whip adds its total, 10 cents,
to the resuit from Mocha, and Mocha adds its cost, 20
returns the final result—$1.29. e cents, to the result from
DarkRoast, and returns
the new total, $1.19.
Okay, here’s what we know so far...
Decorators have the same supertype as the objects they decorate.
You can use one or more decorators to wrap an object. F
Given matmedecoratorhasmesamesupenypeasﬁeobjectitdecorates,wecanpass
around a decorated object in place of the original (wrapped) object. : 4
-Powntl.
® The decorator adds its own behavior either before and/or after delegating to the object it ¥ey
decorates to do the rest of the job.

Objects can be decorated at any time, so we can decorate objects dynamically at runtime
with as many decorators as we like.

Now let’s see how this all really works by looking at the
Decorator Pattern definition and writing some code.

90 Chapter 3

Decorator Pattern - example

Consider a POS system. Suppose this system must produce a
sales receipt. A sales receipt will have a header and a footer, and
perhaps more than one header ... and more than one footer.

Let’s assume the print() method of Receipt results in the receipt’s
lines being printed

Suppose we add coupons to the sales receipt ... perhaps based on
the products purchased / the season / information about the
customer / etc.

Time of day header
Product2 coupon header

Line item 1
Line item 2
Line item 3

Money saved footer

ACS-3913 Ron McFadyen 11

Decorator Pattern - example

UML class diagram

sale

1
DecoratedReceipt
print()
receipt Decorator
print() print()

n

timeOfDay productCoupon

moneySaved

ACS-3913 Ron McFadyen

12

Decorator Pattern — example
object diagram

a sale object is related to a receipt, but the receipt is decorated with
headers and footers (as a particular receipt requires)

\

s:sale h1l: timeOfDay

h2:productCoupon >decorators

f1: moneySaved

_

r: receipt |<--- The decorated object

ACS-3913 Ron McFadyen 13

Decorator Pattern - example
Printing the receipt

ACS-3913 Ron McFadyen

s:sale | | hl: timeOfDay || h2:productCoupon | | f1: moneySaved | | r: receipt
print() : : I I
—>
print() =
o printTime()
e
print()
printCoupon()
ha '
print() _:
print()
B printNote()

14

