Interpreter Design Pattern

The Interpreter pattern is a design pattern that specifies
how to evaluate sentences in a language

Basic idea Is to have a class for each symbol (terminal or
nonterminal) in a specialized computer language

The syntax tree of a sentence in the language is an instance
of the composite pattern

The syntax tree is traversed to evaluate (interpret) the
sentence

Interpreter Design Pattern

Client ;

builds (or is given) a syntax tree
representing a sentence in the
language

Client

Context

Context :
contains information that is
global to the interpreter

AbstractExpression

N

+Interpret(in Context)

AN AN

TerminalExpression

INonterminalEx pression]

+Interpret{in Context)

+Interpret{in Context)

ACS-3913

Ron McFadyen

Interpreter Design Pattern

Context

Client

=]

AbstractExpression

A

+Interpret(in Context)

&

AN

TerminalExpression

INonterminalEx pression

]

+Interprat{in Context)

+nterpret{in Context)

TerminalExpression:

implements interpret() for
terminal symbols in the grammar.

AbstractExpression :

declares an interface for
executing an operation

NonterminalExpression :

Implements interpret() for
nonterminal symbols in the
grammar.

interpret() typically calls itself
recursively

ACS-3913 Ron McFadyen

Interpreter Design Pattern

In wikipedia see:

http://en.wikipedia.org/wiki/Interpreter pattern
Java code for the reverse polish example

http://en.wikipedia.org/wiki/Backus%E2%80%93Naur Form
BNF examples

http://en.wikipedia.org/wiki/Syntax diagram
BNF as a syntax diagram

Last few pages of
http://www.standardpascal.orq/The Programming Language Pascal

1973.pdf
Pascal described in diagrams

ACS-3913 Ron McFadyen

http://en.wikipedia.org/wiki/Interpreter_pattern
http://en.wikipedia.org/wiki/Backus%E2%80%93Naur_Form
http://en.wikipedia.org/wiki/Syntax_diagram
http://www.standardpascal.org/The_Programming_Language_Pascal_1973.pdf
http://www.standardpascal.org/The_Programming_Language_Pascal_1973.pdf

Interpreter Design Pattern

The grammar

—_

expression ::= plus | minus | variable | number
plus ..= expression expression '+’
minus ..= expression expression '-' S

2 1Al I 1 110 | j— | — ee
variable :="a'|'b'|'c'|...|'z wikipedia
digit =01, 9
number ::=digit | digit number

The above defines

An expression to be one of : a plus, a minus, a variable, or a number.

A plus is an expression followed by another expression which in turn is followed
by a plus sign.

A number is a digit, or a digit followed by a number.

etc

Interpreter Design Pattern

Examples of sentences in the grammar are:
510 +
abc+-
510+ 2 4- -

A sentence must be evaluated.
How do we evaluate the above?

Interpreter pattern requires one class per grammar rule
See web page for code

Interpreter Design Pattern

Interface Expression {
public int interpret(Map<String,Expression> variables);

}

Interpreter Design Pattern

class Plus implements Expression {
Expression leftOperand;
Expression rightOperand,;
public Plus(Expression left, Expression right) {
leftOperand = left;
rightOperand = right;
}

public int interpret(Map<String,Expression> variables)

{

return leftOperand.interpret(variables) +
rightOperand.interpret(variables);

.......... Can see more at en.wikipedia.org/wiki/Interpreter_pattern

Interpreter Design Pattern

Example 2
Some previous work (with Yangjun Chen) involved a Synthesized Query Tree
representing graduation requirements for a major
Based on a student’s academic record and declared major ...
Does the student satisfy requirements to graduate?

Complete 3-Year BSc (Geography)
3! or-node: A

Ry and-node: /o
. —__“——___ . v.).
Graduatlono__./-" Gaasty — Major \
O
Huma- Choice C
53 2 ourses
Degree nities Science Required
0> 05 N Os . O
o O
Qs 97 O Qo o
Oy select* Oy select * Og select* Oy scka® Oy select *
from StudentHistory from StudentHistoey frum StudentHistoey from StalentHstary from StudentHistory
where stodentNom = x and where studentNum = x and where studentNem = x and whene studestNum = x and wheze stadentNem = x 2and
gradePomt >= | manjor = *Ceography” area="saence’ courseNem = 23.206 courseNem = 23,331
group by stadentNem group by studentNum group by stadentNem 0y selct
o8 ®
baving sum{crHours >=0(0) having sum{crHours >=18) having sum{crHou s >=f) . R H Q) select *
O select* Oy seect® O select* where student Num = x and from StudentHistory
froen StudentHistory from StudentHistory from StudentHistory cowseNum=23202 Where stoderaNam = xand
where stodentNum = x and where studentNum = x and where studentNam = x and O select * nn}x-'(nmh)
mstitution = ‘UW* area = “humanibes” courseNum = 23205 from StudestHistory i’q’ by edentiom
. - " ving
group by stedentNam group by studentNum where studentNum = x and sum(30 <= crHours <= d48)
kaving sum{crHours >=90) having sum{crHours >=12) courseNum = 23.203

ACS-3913 Ron McFadyen

Interpreter Design Pattern

A simpler situation would be evaluating a
student’s academic record to see if the
student meets a pre-requisite requirement to
enroll in a course

A requirement is a course that must be
taken. Suppose a requirement is met if the
student received a C or better in the course.

Interpreter Design Pattern

Example

Suppose we need to evaluate pre-requisite expressions for
the UW

Assume pre-requisite expressions are defined as:

Expression €< Requirement | BinaryExpression
BinaryExpression €< OrExpression | AndExpression
OrExpression < expression OR expression
AndExpression < expression AND expression

Expression

Interpreter Design Pattern

< Requirement | BinaryExpression

BinaryExpression < OrExpression | AndExpression

OrExpression
AndEXxpression

=<interfaces>>

. <
Expression [~

L4
&

T

L]
R

Requirement

=<abstract=>

BinaryExpression

7 X

OrExpression AndExpression

< expression ‘OR’ expression
< expression ‘AND’ expression

To evaluate a requirement we check a student’s
enrollment record (the context) to see if the
student has taken the course and received a C or
better.

Enrollment

Course
Record

A4

To evaluate a binary expression ...

Interpreter Design Pattern

Code for example:

Driver

Course
EnrollmentRecord
EXxpression
Requirement
BinaryExpression
OrExpression
AndEXxpression

Object diagram?
Sequence diagram?

ACS-3913 Ron McFadyen

http://www.acs.uwinnipeg.ca/3913/expression interpreter/Driver.java
http://www.acs.uwinnipeg.ca/3913/expression interpreter/Course.java
http://www.acs.uwinnipeg.ca/3913/expression interpreter/EnrollmentRecord.java
http://www.acs.uwinnipeg.ca/3913/expression interpreter/Expression.java
http://www.acs.uwinnipeg.ca/3913/expression interpreter/Requirement.java
http://www.acs.uwinnipeg.ca/3913/expression interpreter/BinaryExpression.java
http://www.acs.uwinnipeg.ca/3913/expression interpreter/OrExpression.java
http://www.acs.uwinnipeg.ca/3913/expression interpreter/AndExpression.java

