
Interpreter Design Pattern

ACS-3913 Ron McFadyen 1

The interpreter pattern is a design pattern that specifies

how to evaluate sentences in a language

Basic idea is to have a class for each symbol (terminal or

nonterminal) in a specialized computer language

The syntax tree of a sentence in the language is an instance

of the composite pattern

The syntax tree is traversed to evaluate (interpret) the

sentence

Interpreter Design Pattern

ACS-3913 Ron McFadyen 2

*

Context :

contains information that is

global to the interpreter

Client :

builds (or is given) a syntax tree

representing a sentence in the

language

Interpreter Design Pattern

ACS-3913 Ron McFadyen 3

*
AbstractExpression :

declares an interface for

executing an operation

TerminalExpression:

implements interpret() for

terminal symbols in the grammar.

NonterminalExpression :

Implements interpret() for

nonterminal symbols in the

grammar.

interpret() typically calls itself

recursively

Interpreter Design Pattern

ACS-3913 Ron McFadyen 4

In wikipedia see:

http://en.wikipedia.org/wiki/Interpreter_pattern

Java code for the reverse polish example

http://en.wikipedia.org/wiki/Backus%E2%80%93Naur_Form

BNF examples

http://en.wikipedia.org/wiki/Syntax_diagram

BNF as a syntax diagram

Last few pages of

http://www.standardpascal.org/The_Programming_Language_Pascal_

1973.pdf

Pascal described in diagrams

http://en.wikipedia.org/wiki/Interpreter_pattern
http://en.wikipedia.org/wiki/Backus%E2%80%93Naur_Form
http://en.wikipedia.org/wiki/Syntax_diagram
http://www.standardpascal.org/The_Programming_Language_Pascal_1973.pdf
http://www.standardpascal.org/The_Programming_Language_Pascal_1973.pdf

Interpreter Design Pattern

ACS-3913 Ron McFadyen 5

The grammar

expression ::= plus | minus | variable | number

plus ::= expression expression '+'

minus ::= expression expression '-'

variable ::= 'a' | 'b' | 'c' | ... | 'z'

digit ::= '0' | '1' | ... '9'

number ::= digit | digit number

The above defines

An expression to be one of : a plus, a minus, a variable, or a number.

A plus is an expression followed by another expression which in turn is followed

by a plus sign.

A number is a digit, or a digit followed by a number.

etc

See
wikipedia

Interpreter Design Pattern

ACS-3913 Ron McFadyen 6

Examples of sentences in the grammar are:

5 10 +

a b c + -

5 10 + 2 4 - -

A sentence must be evaluated.

How do we evaluate the above?

Interpreter pattern requires one class per grammar rule

See web page for code

Interpreter Design Pattern

ACS-3913 Ron McFadyen 7

interface Expression {

 public int interpret(Map<String,Expression> variables);

}

Interpreter Design Pattern

ACS-3913 Ron McFadyen 8

 class Plus implements Expression {

 Expression leftOperand;

 Expression rightOperand;

 public Plus(Expression left, Expression right) {

 leftOperand = left;

 rightOperand = right;

 }

 public int interpret(Map<String,Expression> variables)

{

 return leftOperand.interpret(variables) +

 rightOperand.interpret(variables);

 }

}
………. Can see more at en.wikipedia.org/wiki/Interpreter_pattern

Interpreter Design Pattern

ACS-3913 Ron McFadyen 9

Example 2

Some previous work (with Yangjun Chen) involved a Synthesized Query Tree

representing graduation requirements for a major

Based on a student’s academic record and declared major …

 Does the student satisfy requirements to graduate?

Interpreter Design Pattern

ACS-3913 Ron McFadyen 10

A simpler situation would be evaluating a

student’s academic record to see if the

student meets a pre-requisite requirement to

enroll in a course

A requirement is a course that must be

taken. Suppose a requirement is met if the

student received a C or better in the course.

Interpreter Design Pattern

ACS-3913 Ron McFadyen 11

Example

Suppose we need to evaluate pre-requisite expressions for

the UW

Assume pre-requisite expressions are defined as:

Expression  Requirement | BinaryExpression

BinaryExpression  OrExpression | AndExpression

OrExpression  expression OR expression

AndExpression  expression AND expression

Interpreter Design Pattern

ACS-3913 Ron McFadyen 12

*

Expression  Requirement | BinaryExpression

BinaryExpression  OrExpression | AndExpression

OrExpression  expression ‘OR’ expression

AndExpression  expression ‘AND’ expression

To evaluate a requirement we check a student’s

enrollment record (the context) to see if the

student has taken the course and received a C or

better.

Course
Enrollment

Record
*

To evaluate a binary expression …

Interpreter Design Pattern

ACS-3913 Ron McFadyen 13

Code for example:

Driver

Course

EnrollmentRecord

Expression

Requirement

BinaryExpression

OrExpression

AndExpression

Object diagram?

Sequence diagram?

http://www.acs.uwinnipeg.ca/3913/expression interpreter/Driver.java
http://www.acs.uwinnipeg.ca/3913/expression interpreter/Course.java
http://www.acs.uwinnipeg.ca/3913/expression interpreter/EnrollmentRecord.java
http://www.acs.uwinnipeg.ca/3913/expression interpreter/Expression.java
http://www.acs.uwinnipeg.ca/3913/expression interpreter/Requirement.java
http://www.acs.uwinnipeg.ca/3913/expression interpreter/BinaryExpression.java
http://www.acs.uwinnipeg.ca/3913/expression interpreter/OrExpression.java
http://www.acs.uwinnipeg.ca/3913/expression interpreter/AndExpression.java

