
Weather Station Page 39+

In this application, weather station devices supply data to a weather

data object. As the data changes various displays are updated.

Humidity

device

Temperature

device

Pressure

device

Weather

Data

Object

display

display

display

pulls data
updates

displays

Weather Station Page 42

The getter methods just return current values for temperature, etc.

measurementsChanged() is called whenever temperature etc have

changed …. So when this is called, the system must update the

displays, so a first approach is:

Public void measurementsChanged() {

float temp = getTemperature();

float humidity = getHumidity();

float pressure = getPressure();

currentConditionsDisplay.update(temp, humidity, pressure);

statisticsDisplay.update(temp, humidity, pressure);

forecastDisplay.update(temp, humidity, pressure);

Weather Station Page 42

WeatherData

. . .

CurrentConditionsDisplay

update()

display()

1

StatisticsDisplay

update()

display()

ForecastDisplay

update()

display()

1 1

WeatherData is tightly coupled to the displays

To add or remove displays it is necessary to modify the code of

WeatherData … can this be avoided?

Also known as publish/subscribe

The essence of this pattern is that one or more objects

(observers/listeners) are registered to observe an event which may

be raised by the observed object (the subject).

The subject maintains a collection of the observers.

Observer Pattern

http://en.wikipedia.org/wiki/Image:Observer-pattern-uml.jpg

Observer Pattern

Problem:

There are many objects (observers / subscribers) needing to

know of the state changes, or events, of another object (subject

/ publisher), and we want to keep the coupling low.

Solution:

The object that is responsible for the event is given the

responsibility of monitoring for the event – this object is the

subject.

Objects that are interested in the event must register with the

subject as interested parties – as observers.

The subject will notify its observers when the event occurs.

Observer Pattern

Observer: objects that want to be notified of a certain event. An
observer must have an update method whereby it is notified of
an event.

Subject: the object that triggers the event. It must implement:

attach (observer) - add an observer to its list of observers

detach (observer) - remove an observer from …

notify () - goes through its list of observers calling each
observer’s update method

As needed - additional methods to allow an observer to get
additional information

The Observer Pattern defines a one to many dependency between

objects so that when one object changes state, all its dependents are

notified automatically

Interfaces

«interface»

Subject

attach()

detach()

notify()

«interface»

Observer

update()

Different implementations may give different

(but usually similar) names to the above methods

Generic pattern

«interface»

Subject

attach()

detach()

notify()

«interface»

Observer

update()

ConcreteSubject

attach()

detach()

notify()

…

ConcreteObserver

update()

…

*

Generic pattern

«interface»

Subject

attach()

detach()

notify()

«interface»

Observer

update()

ConcreteSubject

attach()

detach()

notify()

…

ConcreteObserver

update()

…

*

The subject may

have many

observers. Their

types are not

known. They are

only known as

objects that

implement the

observer interface.

Subjects and

observers are

loosely coupled.
The observer

knows the subject

and registers with

that object using

the attach()

message.

The subject sends

each observer the

update() message

when the event

occurs.

Asterisk … important

Navigability… important

subclassing

Weather Station Example

«interface»

Subject

attach()

detach()

notify()

«interface»

Observer

update()

WeatherData

attach()

detach()

notify()

CurrentConditionsDisplay

update()

display()

*

StatisticsDisplay

update()

display()

ForecastDisplay

update()

display()

The class diagram

Weather Station Example

«interface»

Subject

attach()

detach()

notify()

«interface»

Observer

update()

WeatherData

attach()

detach()

notify()

CurrentConditionsDisplay

update()

display()

*

StatisticsDisplay

update()

display()

ForecastDisplay

update()

display()

«interface»

DisplayElement

display()

The class diagram

Another feature of this application – another

use for an interface

Weather Station Example

«interface»

Subject

attach()

detach()

notify()

«interface»

Observer

update()

WeatherData

attach()

detach()

notify()

CurrentConditionsDisplay

update()

display()

*

StatisticsDisplay

update()

display()

ForecastDisplay

update()

display()

«interface»

DisplayElement

display()

Concrete

observer

Concrete

subject

observersubject

Concrete

observer

Concrete

observer

This class diagram is adorned with a collaboration

showing the pattern’s participants

Observer

Weather Station Example

Consider the text example.

•Examine the code to ensure you understand how the observer

pattern is implemented.

•Is it pushing or pulling data from the subject?

Suppose you are a developer and there is a requirement for a

new type of observer (e.g. heat index display)

•What must you change in the existing code?

•What classes must you write? What methods do they have?

Draw sequence diagrams to illustrate behaviour. What

messages are sent

•When an object registers?

•When an object unregisters?

•When the event of interest occurs?

Pages 64-71

Aside:

Java - consider the Observable class and the Observer interface.
•Observable: http://java.sun.com/j2se/1.5.0/docs/api/java/util/Observable.html

•Observer: http://java.sun.com/j2se/1.5.0/docs/api/java/util/Observer.html

•Aside: How do we rewrite our weather station example to use these features of Java?

http://java.sun.com/j2se/1.5.0/docs/api/java/util/Observable.html
http://java.sun.com/j2se/1.5.0/docs/api/java/util/Observer.html

Other sources

Wikipedia

Software design patterns

Observer

www.dofactory.com

Reference Guides >> .NET Design Patterns

23 Gang of Four (GoF) patterns

Definitions, generic UML diagram plus ‘real-world’ examples (in C#)

https://en.wikipedia.org/wiki/Observer_pattern

