
ACS-3913 Ron McFadyen 1

Singleton

Slides for ACS-3913

2 to 5 and

12 to 16

Chapter 5

ACS-3913 Ron McFadyen 2

Singleton

To guarantee that there is at most one instance of a class we can

apply the singleton pattern.

ClassX
Static uniqueInstance

Static getInstance()

uniqueInstance is a class variable that holds the one

instance.

getInstance() is a class method we can access regardless

of whether there is an instance or not.

getInstance() is just the recommended name for this

method – you may encounter examples that use a

different method name.

Constructor is private and called only by getInstance()

Chapter 5

ACS-3913 Ron McFadyen 3

Singleton

The text has a ChocolateBoiler class for which they want to

have at most one instance.

ChocolateBoiler
private static ChocolateBoiler uniqueInstance;

…

private ChocolateBoiler()

public static ChocolateBoiler getInstance()

public void fill()

public void drain()

public void boil()

public boolean isEmpty()

public boolean isBoiled()

Constructor is private

public method that returns

the instance

ACS-3913 Ron McFadyen 4

Sequence Diagram for Singleton

In order to get a reference to the singleton object, the client

object just sends the message:

ChocolateBoiler singleton = ChocolateBoiler.getInstance();

One scenario:

client ChocolateBoiler

:ChocolateBoiler
getInstance()

fill()

… other messages as necessary

ACS-3913 Ron McFadyen 5

The other scenario:

(when is this realized?)

client ChocolateBoiler :ChocolateBoiler

getInstance()

fill()

Sequence Diagram for Singleton

… other messages as necessary

ACS-3913 Ron McFadyen 6

Singleton

If there’s only ever one thread, the previous implementation

will work.

However, if there’s more than one thread we could end up with

multiple “singletons” (see page 178)

Each thread has its own “copy” of variables. The value of a

variable could be “out-of-sync” with the main copy.

We could have getInstance started by several threads. Each

could test the value of uniqueInstance and proceed to instantiate

the singleton.

To work correctly, we need a technique to synchronize the

actions of the threads. With Java we could use synchronization

of methods or variables.

ACS-3913 Ron McFadyen 7

Multi-threading and Singletons

The text presents synchronized static methods as one solution.

This results in locking and unlocking of the class, and hence

only one synchronized method will execute at a time.

public class Singleton {

private static Singleton uniqueInstance;

// other useful instance variables here

private Singleton() {}

public static synchronized Singleton getInstance() {

if (uniqueInstance == null) {

uniqueInstance = new Singleton();

}

return uniqueInstance;

}

// other useful methods here

}

ACS-3913 Ron McFadyen 8

Synchronized Methods

When a static synchronized method is invoked, the thread must

first acquire the intrinsic lock for the Class object associated

with the class – this is done automatically for you.

Only one thread can hold a lock at one time; other threads that

request a lock are placed in a wait queue.

ACS-3913 Ron McFadyen 9

Synchronized Methods

Synchronized methods introduce overhead and we can avoid

them.

Some alternatives, use:

a) double-checked locking

This scheme uses a synchronized statement and a volatile

variable.

b) eager instantiation

ACS-3913 Ron McFadyen 10

Synchronized Methods

If a variable is not declared as volatile (i.e. it is non-volatile)

then thread A, when accessing the variable, may not see the

most recent value that was written by some other thread, say

thread B.

If a variable is declared as volatile then it is guaranteed that any

thread which reads the field will see the most recently written

value.

ACS-3913 Ron McFadyen 11

1st alternative: Double-checked locking

Check first to see if the instance exists or not. If not, then lock

up a block of code.

// Danger! This implementation of Singleton not

// guaranteed to work prior to Java 5

//

public class Singleton {

private volatile static Singleton uniqueInstance;

private Singleton() {}

public static Singleton getInstance() {

if (uniqueInstance == null) {

synchronized (Singleton.class) {

if (uniqueInstance == null) {

uniqueInstance = new Singleton();

} } }

return uniqueInstance;

} }

A synchronized block of

code.

Only one thread at a

time will execute this.

A thread’s copy of a volatile

attribute is reconciled with the

“master” copy each time it is

referenced.

Note these two checks on

uniqueInstance

Second check is necessary

to verify uniqueInstance is

still null

Results in very little overhead compared to synchronizing a whole method/class.

ACS-3913 Ron McFadyen 12

2nd alternative: Eager Instantiation

If your system always instantiates the singleton, then create it in

advance – very simple – done by class loader prior to the class

being used.

public class Singleton {

private static Singleton uniqueInstance = new Singleton();

private Singleton() {}

public static Singleton getInstance() {

return uniqueInstance;

}

}

When asked, just return

the reference to the

static variable

One instance as a class

variable

When the class is loaded, the instance is created and available.

getInstance() is always realized the same way.

ACS-3913 Ron McFadyen 13

Singleton

How do we show that some class in a UML class diagram is a

singleton class?

ACS-3913 Ron McFadyen 14

Singleton

Singleton – class diagram

To guarantee that there is at most one instance of a class we can

apply the singleton pattern.

SingletonClass

-uniqueInstance

-Singleton()

+getInstance()

uniqueInstance is a class variable that

holds the one instance.

getInstance() is a class method we can

access regardless of whether there is an

instance or not.

Constructor is private.

ACS-3913 Ron McFadyen 15

Singleton – class diagram

Other notations:

SingletonClass

-uniqueInstance

-Singleton()

+getInstance()

1

«Singleton»

SingletonClass

-uniqueInstance

-Singleton()

+getInstance()

ACS-3913 Ron McFadyen 16

Singleton

Some other examples

• Consider the shapes example in BlueJ

• Consider the wikipedia entry for Singleton Pattern

