
ACS-4904 Ron McFadyen 1

Aggregate Navigation (Ch 15, pages 345++)

From “20 criteria for dimensional friendly systems”

#4. Open Aggregate Navigation.

The system uses physically stored aggregates as a way to

enhance performance of common queries. These

aggregates, like indexes, are chosen silently by the

database if they are physically present. End users and

application developers do not need to know what

aggregates are available at any point in time, and

applications are not required to explicitly code the name

of an aggregate. All query processes accessing the data,

even those from different application vendors, realize the

full benefit of aggregate navigation.

ACS-4904 Ron McFadyen 2

Aggregation

• Created for performance reasons

• Using one base star schema, many aggregates can be defined

• Some dimensions could be lost, some shrunken or collapsed

(but conforming)

Customer Date

Product

Store

Transaction

Price

Cost

Tax

Qty

Consider the

Transaction-level schema:

ACS-4904 Ron McFadyen 3

Aggregation

Customer Date

Product

Store

Transaction

Price

Cost

Tax

Qty

Month

Product

Store

Price

Cost

Tax

Qty

Transaction-level schema Aggregate schema with:

•lost dimensions (transaction, customer)

•shrunken dimension (month)

•metrics are accumulated over the

transactions, customers, month

•How to create the fact table?

ACS-4904 Ron McFadyen 4

Aggregation

• Suppose you must create the schema:

• What are the steps to do so?

– Product and Store already exist, but the others must be

created (if they don’t already exist)

Month

Product

Store

Price

Cost

Tax

Qty

ACS-4904 Ron McFadyen 5

Aggregation

Design Goal 1

• Aggregates must be stored in their own fact tables; each

distinct aggregation level must occupy its own unique fact

table

ACS-4904 Ron McFadyen 6

Aggregation

Design Goal 2

• If not already existing, dimension tables attached to the

aggregate fact tables must be shrunken versions of the

dimension tables associated with the base fact table

Product

ProductSK

SKU

Description

Brand

Category

Department

Category

categorySK

Category

Department

Category is a

shrunken version

of Product

Attribute names

from Product

Category conforms

to Product

ACS-4904 Ron McFadyen 7

Aggregation

Design Goal 3

• The base atomic fact table and all of its related aggregate

fact tables must be associated together as a “family of

schemas” so that the aggregate navigator knows which

tables are related to one another.

– Kimball’s algorithm/technique for mapping an SQL

statement from a base schema to an aggregate schema

 slide 9

ACS-4904 Ron McFadyen 8

Aggregation

Design Goal 4

• Force all SQL created by any end-user data access tool or

application to refer exclusively to the base fact table and its

associated full-size dimension tables.

ACS-4904 Ron McFadyen 9

Kimball’s Aggregate Navigation Algorithm

1. For any given SQL statement presented to the DBMS, find the
smallest fact table that has not yet been examined in the family of
schemas referenced by the query. "Smallest" in this case means the
least number of rows. Choose the smallest schema and proceed to
step 2.

2. Compare the table fields in the SQL statement to the table fields in the
particular Fact and Dimension tables being examined.

This is a series of lookups in the DBMS system catalog.

If all of the fields in the SQL statement can be found in the Fact
and Dimension tables being examined, alter the original
SQL by simply substituting destination table names for
original table names. No field names need to change.

If any field in the SQL statement cannot be found in the current
Fact and Dimension tables, then go back to step 1 and find
the next larger Fact table.

3. Run the altered SQL. It is guaranteed to return the correct answer
because all of the fields in the SQL statement are present in the
chosen schema.

ACS-4904 Ron McFadyen 10

Materialized View (MV)

An MV is a view where the result set is pre-computed and
stored in the database

Periodically an MV must be re-computed to account for updates
to its source tables

MVs represent a performance enhancement to a DBMS as the
result set is immediately available when the view is referenced
in a SQL statement

MVs are used in some cases to provide summary or aggregates
for data warehousing transparently to the end-user

Query optimization is a DBMS feature that may re-write an
SQL statement supplied by a user.

ACS-4904 Ron McFadyen 11

Aggregates

Oracle provides a database-specific means for navigating

user queries to the optimum aggregated tables

The query rewrite mechanism in the Oracle server

automatically rewrites an SQL query to use the

summary tables.

https://docs.oracle.com/cd/B28359_01/server.111/b28313/

qrbasic.htm#i1006201

https://docs.oracle.com/cd/B10501_01/server.920/a96520/

physical.htm#97989

https://docs.oracle.com/cd/B28359_01/server.111/b28313/qrbasic.htm#i1006201
https://docs.oracle.com/cd/B10501_01/server.920/a96520/physical.htm#97989

ACS-4904 Ron McFadyen 12

Materialized Views

Oracle example:

CREATE MATERIALIZED VIEW hr.mview_employees AS

SELECT employees.employee_id, employees.email

FROM employees

UNION ALL

SELECT new_employees.employee_id, new_employees.email

FROM new_employees;

ACS-4904 Ron McFadyen 13

Materialized Views

SQL Server has “indexed views” … let’s examine this article

http://www.databasejournal.com/features/mssql/article.php/2119721

http://www.databasejournal.com/features/mssql/article.php/2119721

