Chapter 2: Three Basic Architectures Corporate Information Factory Dimensional Data Warehouse Stand-alone Data Marts The main points of Ch 2 are - In practice there are 3 general warehousing architectures - The book does not indicate pros/cons ← stays neutral - Star schema plays a role in each, and so its worth understanding Figure 2-1 A simplified view of W.H. Inmon's architecture: the Corporate Information Factory ## Dimensional DataWarehouse Figure 2-2 Ralph Kimball's data warehouse architecture: the dimensional data warehouse ACS-4904 3 ## Stand-alone data marts ACS-4904 4 ## Bill Inmon and Ralph Kimball are well-known individuals | Architecture | Advocate | Also Known As | Description | Role of
Dimensional Design | | | |-------------------------------------|--------------------------|--|---|---|--|--| | Corporate
Information
Factory | Bill Inmon | Atomic data
warehouse Enterprise data
warehouse | Enterprise data warehouse component is an integrated repository of atomic data It is not accessed directly Data marts reorganize data for departmental use/analysis | Dimensional design
used for data marts
only | | | | Dimensional
Data
Warehouse | Ralph Kimball | Enterprise data warehouse Bus architecture Architected data marts Virtual data marts | Dimensional data warehouse is an integrated repository of atomic data It may be accessed directly Subject areas within the dimensional data warehouse sometimes called data marts Data marts not required to be separate databases | All data is organized dimensionally | | | | Stand-Alone
Data Marts | No takers,
yet common | Data martSiloStovepipeIsland | Subject area implementation
without an enterprise context | May employ
dimensional design | | | Figure 2-5 Three data warehouse architectures | | | | | \ | | | | / _ | | | | |---|--|---|-------------|------|------------|--------------------|----|--------------|----|--------------|--| | | Enterprise Level | | | | | Subject Area Level | | | | | | | | Integrated
Repository
of Atomic Da | A | Format | Dire | ect Access | Data Mar | ts | Format | Di | irect Access | | | Corporate
Information Factory | ~ | | 3NF | | No | Physica | 1 | Dimensional* | | Yes | | | Dimensional Data
Warehouse | ~ | I | Dimensional | | Yes* | Logical* | | Dimensional | | Yes | | | Stand-Alone Data
Marts | × | | n/a | | n/a | Physical | | Dimensional* | | Yes | | | Figure 2-6 Characteristics of each architecture | | | | | | | | | | | |