# Chapter 7

- •Attribute hierarchies
- •Snowflake design
- Outriggers

•Refer to pages 147, 157-159, 163-170

An attribute hierarchy describes parent—child relationships between groups of attributes within a dimension

Multiple attribute hierarchies may exist

Aside: <a href="https://danischnider.wordpress.com/2017/05/31/attribute-dimensions-and-hierarchies-in-oracle-12c/">https://danischnider.wordpress.com/2017/05/31/attribute-dimensions-and-hierarchies-in-oracle-12c/</a>

## Product Dimension Table

## PRODUCT

product\_key sku product\_name product\_color brand code brand name brand\_manager category\_code category\_name

This product dimension contains a product hierarchy that could be drawn out as shown →

Products are organized into brands which are organized into categories



Multiple hierarchies can exist in a single dimension



Alternatively some describe a hierarchy as:

All Products (1) 
$$\rightarrow$$
 Categories (25)  $\rightarrow$  Brands (650)  $\rightarrow$  Products (8000)

The 8000 products are organized into 25 categories. At the next level there are 650 brands, and at the last level we have 8000 products.

A Day dimension:

All Days (1) 
$$\rightarrow$$
 Years (5)  $\rightarrow$  Quarters (20)  $\rightarrow$  Months (60)  $\rightarrow$  Days (1826)

#### **Instance hierarchies**

In some cases a hierarchy exists but can't be shown as an attribute hierarchy (**Ch 10**)

e.g. The supervises relationship (Northwind). An employee may supervise other employees.

# **Snowflaking**

When relationships between attributes in a dimension are expressed explicitly (i.e. normalizing a dimension based on hierarchies realized as physical tables), the result is called a snowflake schema.

The text advises against normalization of dimension tables

On rare occasions, a limited form of snowflaking is employed

- help resolve unmanageable row length
- ensure consistent representation of repeating attributes.

# **Snowflaking**

For those trained in ER modeling, the snowflake reflects some best practices learned in the service of operational systems - it is of little utility for an analytic database, aside from saving some space.

Figure 7-5 illustrates a snowflaked design

Ch 9 will discuss Multi-valued attributes and bridges Ch 10 will discuss Recursive hierarchies and bridges



Snowflaked design

Repeating attributes or groups of attributes *might* be better handled using Outriggers – to control confusion that may arise with similarly-named attributes



Figure 7-6 Repeating location and date attributes in a dimension table



ACS-4904 Ron McFadyen

#### Page 166:

As Figure 7-8 illustrates, the presence of **outriggers** increases the number of joins that may be involved in querying the star.

This translates into an increase in **complexity**, and potentially a **decrease in performance**.

Additional complexity is unnecessary from a user's point of view, but it **is possible to hide the outrigger** by replacing the dimension and outriggers with a **view**.

A negative impact on query performance may be more serious. Even if outriggers do not confuse the database's ability to perform a star join, they still increase the number of joins that must be processed.

The presence of outriggers in Figure 7-8 doubles the number of potential joins to process when querying order facts. Without outriggers, this star would require a maximum of four joins; with the outriggers, it includes eight joins.



Querying a star with outriggers involves more joins than otherwise

Effect on type 2 dimensions:

With an outrigger in place, it may be necessary to apply a type 2 change to a dimension row, even if none of its attributes have changed. The change is precipitated by a type 2 change in the outrigger.

See Figure 7-9 

See Figure 7-9



**Top half of Figure 7-9** 



**Bottom half of Figure 7-9** 

# Advantages of the (denormalized) Star Schema

- Easy to grasp the model
- Redundancy in the data set also simplifies the ETL
- Performance benefit In a star, all facts and dimensions are separated by a maximum of one join. DBMSs that are 'star'-aware, have special join procedures (star-join ... not discussed in ACS-4902)
- Aside

https://docs.oracle.com/cd/E29633 01/CDMOG/GUID-A21256D6-7A93-4FBA-9688-053F6C5CF432.htm