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Indexes

• B-tree index

• Bitmapped  index

• Bitmapped join index

A data warehousing DBMS 

will likely provide these, or 

variations, on these

All DBMSs provide variations 

of b-trees for indexing
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B-tree structures

• Most used access structure in database systems. 

• There are b-trees, b+-trees, b*-trees, etc.

• B-trees and their variations are:

• balanced

• very good in environments with mixed reading and 

writing operations, concurrency, exact searches and 

range searches

• provide excellent performance when used to find a few 

rows in big tables

• are studied in ACS-3902
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Bitmapped index

Consider the following Customer table

Cust_id gender province phone

22 M Ab (403) 444-1234

44 M Mb (204) 777-6789

77 F Sk (306) 384-8474

88 F Sk (306) 384-6721

99 M Mb (204) 456-1234

Province: 

Mb … rows 2, 5

Sk   … rows 3, 4

Ab   … row 1

Gender: 

M … rows 1, 2, 5

F … rows  3, 4
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Bitmapped index

• Suppose for a relation R the cardinality of attribute A is c 

and so we can represent the values existing for A as a1, a2, 

… ac

• Then, if we have a bitmap index for R on attribute A there 

are c bit arrays, b1, b2, … bc , one for each value of 

attribute A: bi is the bit array corresponding to value ai

• Consider bk

if the ith row of R contains the value aK for attribute A, 

then the ith bit of bk is 1

otherwise the ith bit of bk is 0
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Bitmapped index

• If we construct a bitmapped index for Customer on Gender 

we would have two bit arrays of 5 bits each

or:

m 1   1   0   0   1

f 0   0   1   1   0

m 

1   

1   

0   

0   

1

f   

0   

0   

1   

1   

0
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Bitmapped index

• If we construct a bitmapped index for Customer on 

Province we would have three bit arrays of 5 bits each:

Ab 1   0   0   0   0

Mb 0   1   0   0   1

Sk .    .    .    .    .
What values appear in this 

vector?
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Bitmapped index

•Consider a query 

Select Customer.name, Sum(s.amount) 

From Sales s Inner Join Customer c On ( … )

where c.gender =M

and c.province = Mb 

Group by Customer.name

How could the query access plan utilize bit map indexes?
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Bitmapped index

•A query tree (ACS-4902) for  
Select Customer.name, Sum(s.amount) 

From Sales s Inner Join Customer c On ( … )

where c.gender =M

and c.province = Mb 

Group by Customer.name

Sort (to prepare for grouping)

groups and sums ( to report name and sum)

Join (inner join of left and right subtree)

Selection (determine pertinent rows of 

Customer)

Customer

Relation 

Sales

Relation 



ACS-4904       Ron McFadyen 9

Bitmapped index

•Consider the where clause that selects rows of Customer

c.gender =M

and c.province = Mb

By anding the two bit arrays for gender=M and 

province=Mb, the dbms knows which rows of Customer to 

join to Sales

In our case, two rows of Customer are involved instead of 

the whole Customer table.

Mb 0   1   0   0   1

0   1   0   0   1
M  1   1   0    0   1

“and” 
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Bitmapped Join Index

In general, a join index is a structure containing index entries 

(attribute value, row pointers), where the attribute values are 

in one table, and the row pointers are to related rows in 

another table

Consider

DateSales

Customer
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Bitmapped Join Index

Cust_id gender province phone

22 M Ab (403) 444-1234

44 M Mb (204) 777-6789

77 F Sk (306) 384-8474

88 F Sk (306) 384-6721

99 M Mb (204) 456-1234

Cust_id Store_id Date_id Amount

22 1 90 100

44 2 7 150

22 2 33 50

44 3 55 50

1

2

3

4

99 3 55 255

row

Sales

Customer
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Bitmapped Join Index

Example (Oracle): to create a bitmapped join index on Sales using 

the province attribute of Customer:

CREATE BITMAP INDEX cust_sales_bji 

ON Sales(Customer.province) 

FROM Sales, Customer

WHERE Sales.cust_id = Customer.cust_id;
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Bitmapped Join Index

There are three province values in Customer. The join index 
will have three entries where each has a province value and a 
bitmap: 

Mb 0 1 0 1 1

Ab 1 0 1 0 0

Sk 0 0 0 0 0

The bitmap join index shows that rows 2, 4, 5 of the Sales 
fact table are rows for customers with province = Mb

The bitmap join index shows that rows 1, 3 of the Sales fact 
table are rows for customers with province = Ab

The bitmap join index shows that no rows of the Sales fact 
table are rows for customers with province = Sk
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Bitmapped Join Index

A bitmap join index could be used to evaluate the following 

query. In this query, the CUSTOMER table does not need to 

be accessed; the query can be executed using only the bitmap 

join index and the Sales table. 

SELECT SUM(Sales.dollar_amount) 

FROM Sales, Customer

WHERE Sales.cust_id = Customer.cust_id 

AND Customer.province = Mb;

The bitmap index will show that rows 2, 4, 5 of the Sales fact 

table are rows for customers with province = Mb
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HOBI and Time-HOBI

Reference:

Time-HOBI: Indexing Dimension Hierarchies by Means of Hierarchically 

Organized Bitmaps; Chmiel, Morzy, Wrembel; DOLAP ’10; October 30, 2010; 

Toronto, Ontario, Canada

See sections 3, 4 & 5.1, 5.2
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Bit-Sliced Index (ignore till further notice)

Consider a numeric attribute c of a relation R.

Suppose n is the number of bits needed in the binary coding 

of values of c.

Suppose R has m tuples.

Let B be a bit matrix of n columns and m rows where bi,j is 1 

if the coding of c in the ith tuple has the jth bit on.

Each column of B is stored separately.
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Bit-Sliced Index
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Consider the following Customer table

Cust_id age province phone

22 20 Ab (403) 444-1234

44 21 Mb (204) 777-6789

77 22 Sk (306) 384-8474

88 23 Sk (306) 384-6721

99 40 Mb (204) 456-1234

A bit-sliced index on age for Customer: 

00010100

00010101

00010110

00010111

00101000
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Bit-Sliced Index
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Consider the following Customer table

Cust_id age province phone

22 20 Ab (403) 444-1234

44 21 Mb (204) 777-6789

77 22 Sk (306) 384-8474

88 23 Sk (306) 384-6721

99 40 Mb (204) 456-1234

A bit-sliced index on age for Customer: 

00010100

00010101

00010110

00010111

00010100

Calculate the average age without 

using the Customer dimension:

___________________________
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Bit-Sliced Index

March 2010 ACS-4904       Ron McFadyen 19

Similarly suppose there is a bit-sliced index on Sales based on 

the quantity attribute.

• To find the total sales quantity without going to the data (i.e. 

using the index only)

• Examine the columns one by one… Accumulate a sum 

over the columns Bi, i=0, 1, 2, …: 

• For column i, count number of bits on, multiply by 2i

• To find those sales where the quantity is > 63

• Examine column B6 to determine if the bit is on


