
ACS-4904 Ron McFadyen 1

Indexes

• B-tree index

• Bitmapped index

• Bitmapped join index

A data warehousing DBMS

will likely provide these, or

variations, on these

All DBMSs provide variations

of b-trees for indexing

ACS-4904 Ron McFadyen 2

B-tree structures

• Most used access structure in database systems.

• There are b-trees, b+-trees, b*-trees, etc.

• B-trees and their variations are:

• balanced

• very good in environments with mixed reading and

writing operations, concurrency, exact searches and

range searches

• provide excellent performance when used to find a few

rows in big tables

• are studied in ACS-3902

ACS-4904 Ron McFadyen 3

Bitmapped index

Consider the following Customer table

Cust_id gender province phone

22 M Ab (403) 444-1234

44 M Mb (204) 777-6789

77 F Sk (306) 384-8474

88 F Sk (306) 384-6721

99 M Mb (204) 456-1234

Province:

Mb … rows 2, 5

Sk … rows 3, 4

Ab … row 1

Gender:

M … rows 1, 2, 5

F … rows 3, 4

ACS-4904 Ron McFadyen 4

Bitmapped index

• Suppose for a relation R the cardinality of attribute A is c

and so we can represent the values existing for A as a1, a2,

… ac

• Then, if we have a bitmap index for R on attribute A there

are c bit arrays, b1, b2, … bc , one for each value of

attribute A: bi is the bit array corresponding to value ai

• Consider bk

if the ith row of R contains the value aK for attribute A,

then the ith bit of bk is 1

otherwise the ith bit of bk is 0

ACS-4904 Ron McFadyen 5

Bitmapped index

• If we construct a bitmapped index for Customer on Gender

we would have two bit arrays of 5 bits each

or:

m 1 1 0 0 1

f 0 0 1 1 0

m

1

1

0

0

1

f

0

0

1

1

0

ACS-4904 Ron McFadyen 6

Bitmapped index

• If we construct a bitmapped index for Customer on

Province we would have three bit arrays of 5 bits each:

Ab 1 0 0 0 0

Mb 0 1 0 0 1

Sk
What values appear in this

vector?

ACS-4904 Ron McFadyen 7

Bitmapped index

•Consider a query

Select Customer.name, Sum(s.amount)

From Sales s Inner Join Customer c On (…)

where c.gender =M

and c.province = Mb

Group by Customer.name

How could the query access plan utilize bit map indexes?

ACS-4904 Ron McFadyen 8

Bitmapped index

•A query tree (ACS-4902) for
Select Customer.name, Sum(s.amount)

From Sales s Inner Join Customer c On (…)

where c.gender =M

and c.province = Mb

Group by Customer.name

Sort (to prepare for grouping)

groups and sums (to report name and sum)

Join (inner join of left and right subtree)

Selection (determine pertinent rows of

Customer)

Customer

Relation

Sales

Relation

ACS-4904 Ron McFadyen 9

Bitmapped index

•Consider the where clause that selects rows of Customer

c.gender =M

and c.province = Mb

By anding the two bit arrays for gender=M and

province=Mb, the dbms knows which rows of Customer to

join to Sales

In our case, two rows of Customer are involved instead of

the whole Customer table.

Mb 0 1 0 0 1

0 1 0 0 1
M 1 1 0 0 1

“and” 

ACS-4904 Ron McFadyen 10

Bitmapped Join Index

In general, a join index is a structure containing index entries

(attribute value, row pointers), where the attribute values are

in one table, and the row pointers are to related rows in

another table

Consider

DateSales

Customer

ACS-4904 Ron McFadyen 11

Bitmapped Join Index

Cust_id gender province phone

22 M Ab (403) 444-1234

44 M Mb (204) 777-6789

77 F Sk (306) 384-8474

88 F Sk (306) 384-6721

99 M Mb (204) 456-1234

Cust_id Store_id Date_id Amount

22 1 90 100

44 2 7 150

22 2 33 50

44 3 55 50

1

2

3

4

99 3 55 255

row

Sales

Customer

ACS-4904 Ron McFadyen 12

Bitmapped Join Index

Example (Oracle): to create a bitmapped join index on Sales using

the province attribute of Customer:

CREATE BITMAP INDEX cust_sales_bji

ON Sales(Customer.province)

FROM Sales, Customer

WHERE Sales.cust_id = Customer.cust_id;

ACS-4904 Ron McFadyen 13

Bitmapped Join Index

There are three province values in Customer. The join index
will have three entries where each has a province value and a
bitmap:

Mb 0 1 0 1 1

Ab 1 0 1 0 0

Sk 0 0 0 0 0

The bitmap join index shows that rows 2, 4, 5 of the Sales
fact table are rows for customers with province = Mb

The bitmap join index shows that rows 1, 3 of the Sales fact
table are rows for customers with province = Ab

The bitmap join index shows that no rows of the Sales fact
table are rows for customers with province = Sk

ACS-4904 Ron McFadyen 14

Bitmapped Join Index

A bitmap join index could be used to evaluate the following

query. In this query, the CUSTOMER table does not need to

be accessed; the query can be executed using only the bitmap

join index and the Sales table.

SELECT SUM(Sales.dollar_amount)

FROM Sales, Customer

WHERE Sales.cust_id = Customer.cust_id

AND Customer.province = Mb;

The bitmap index will show that rows 2, 4, 5 of the Sales fact

table are rows for customers with province = Mb

ACS-4904 Ron McFadyen 15

HOBI and Time-HOBI

Reference:

Time-HOBI: Indexing Dimension Hierarchies by Means of Hierarchically

Organized Bitmaps; Chmiel, Morzy, Wrembel; DOLAP ’10; October 30, 2010;

Toronto, Ontario, Canada

See sections 3, 4 & 5.1, 5.2

ACS-4904 Ron McFadyen 16

Bit-Sliced Index (ignore till further notice)

Consider a numeric attribute c of a relation R.

Suppose n is the number of bits needed in the binary coding

of values of c.

Suppose R has m tuples.

Let B be a bit matrix of n columns and m rows where bi,j is 1

if the coding of c in the ith tuple has the jth bit on.

Each column of B is stored separately.

ACS-4904 Ron McFadyen 17

Bit-Sliced Index

March 2010 ACS-4904 Ron McFadyen 17

Consider the following Customer table

Cust_id age province phone

22 20 Ab (403) 444-1234

44 21 Mb (204) 777-6789

77 22 Sk (306) 384-8474

88 23 Sk (306) 384-6721

99 40 Mb (204) 456-1234

A bit-sliced index on age for Customer:

00010100

00010101

00010110

00010111

00101000

ACS-4904 Ron McFadyen 18

Bit-Sliced Index

March 2010 ACS-4904 Ron McFadyen 18

Consider the following Customer table

Cust_id age province phone

22 20 Ab (403) 444-1234

44 21 Mb (204) 777-6789

77 22 Sk (306) 384-8474

88 23 Sk (306) 384-6721

99 40 Mb (204) 456-1234

A bit-sliced index on age for Customer:

00010100

00010101

00010110

00010111

00010100

Calculate the average age without

using the Customer dimension:

ACS-4904 Ron McFadyen 19

Bit-Sliced Index

March 2010 ACS-4904 Ron McFadyen 19

Similarly suppose there is a bit-sliced index on Sales based on

the quantity attribute.

• To find the total sales quantity without going to the data (i.e.

using the index only)

• Examine the columns one by one… Accumulate a sum

over the columns Bi, i=0, 1, 2, …:

• For column i, count number of bits on, multiply by 2i

• To find those sales where the quantity is > 63

• Examine column B6 to determine if the bit is on

